Indice

Elenco dei simboli .. II
Introduzione .. V

1 Il vento, una risorsa .. 1
 1.1 Rappresentazione matematica del vento .. 9
 1.2 L’energia eolica ... 12
 1.3 Metodi alternativi di misura della risorsa eolica .. 13
 1.4 Le risorse eoliche in Italia .. 14

2 L’aerogeneratore .. 16
 2.1 Cenni storici .. 16
 2.2 Generalità ... 19
 2.3 Turbine ad asse verticale .. 20
 2.4 Turbine ad asse orizzontale ... 21
 2.5 Analisi dei componenti di una turbina HAWT ... 22
 2.5.1 La pala .. 23
 2.5.2 Il mozzo .. 25
 2.5.3 Il moltiplicatore di giri ... 26
 2.5.4 La struttura di sostegno ... 27
 2.5.5 Il generatore elettrico ... 28
 2.5.6 Il generatore sincrono ... 29
 2.5.7 Il generatore asincrono ... 30
 2.5.8 Il trasformatore .. 31
 2.5.9 Dispositivi ausiliari .. 32
 2.5.10 Dispositivi di controllo ... 32
 2.5.11 Connessione alla rete elettrica .. 38
 2.6 Energia producibile da un aerogeneratore .. 39

3 Aerodinamica della turbina HAWT .. 41
 3.1 Generalità aerodinamiche della pala .. 41
3.2 Analisi aerodinamica della pala ... 44
3.3 Modelli fluidodinamici della pala ... 47
 3.3.1 Teoria impulsiva semplice ... 47
 3.3.2 Teoria impulsiva vorticosa ... 54
 3.3.3 Teoria degli elementi di pala senza scia rotazionale 60
 3.3.4 Teoria degli elementi di pala con scia rotazionale 62
 3.3.5 Modello BEMT .. 65
 3.3.5.1 Modello BEMT senza scia rotazionale 66
 3.3.5.2 Modello BEMT con scia rotazionale ... 67
 3.3.5.3 Effetto delle perdite di punta .. 69

4 Gli impianti eolici .. 71
 4.1 Le wind farm on-shore ... 71
 4.2 Le wind farm off-shore .. 72
 4.3 La mappa eolica .. 72
 4.4 Il fattore di utilizzazione .. 73

5 Ambiente e territorio ... 74
 5.1 Impatto visivo .. 74
 5.2 Rumore .. 75
 5.3 Effetti elettromagnetici .. 75
 5.4 Effetti su flora e fauna ... 75

6 Risultati numerici .. 80
 6.1 Osservazioni ...

Ringraziamenti ...
ELENCO DEI SIMBOLI.

A sezione della vena fluida [m2]
A$_P$ superficie del profilo [m2]
A$_{\infty}$ area della sezione trasversale del tubo di flusso a monte del rotore [m2]
A$_d$ area della sezione trasversale del disco attuatore [m2]
A$_w$ area della sezione trasversale del tubo di flusso a valle del rotore [m2]
a fattore di induzione assiale
a' fattore di induzione tangenziale
B numero di pale
C parametro di scala [m/s]
c corda [m]
C$_D$ coefficiente di resistenza [-]
C$_L$ coefficiente di portanza [-]
C$_M$ coefficiente di coppia [-]
C$_p$ coefficiente di Potenza
C$_S$ coefficiente di spinta tangenziale [-]
C$_T$ coefficiente di spinta assiale [-]
D resistenza [N]
E efficienza [-]
f fattore di correzione di Prandtl
F$_w$(V) funzione di Weibull
F$_r$(V) funzione di Rayleigh
g accelerazione di gravità [m/s2]
K parametro di forma [-]
L temperature laps rate (gradiente termico verticale) =0,0065 [K/m]
L portanza [N]
M momento aerodinamico [Nm]
\(\dot{m} \) portata massica [Kg/s]

p pressione [N/m\(^2\)]

\(P_{\text{disp}} \) potenza disponibile in vena fluida [W]

\(P_r \) potenza resa [W]

\(R \) costante specifica dell’aria secca =287,05 [J/(Kg K)]

\(\text{Re} \) numero di Reynolds [-]

\(r \) raggio generico della sezione del rotore [m]

s scorrimento [-]

\(S \) spinta tangenziale [N]

\(\text{Seal} \) altitudine del sito [m]

\(T \) spinta assiale [N]

\(T_o \) temperatura nelle condizioni standard =288 [K]

u velocità tangenziale [m/s]

\(\vec{u} \) vettore velocità componente tangenziale del flusso [m/s]

\(V \) velocità del flusso [m/s]

\(\vec{V} \) vettore velocità relativa del flusso [m/s]

\(V_\infty \) velocità del flusso indisturbato a monte del rotore [m/s]

\(V_d \) velocità del flusso sul disco attuatore [m/s]

\(V_w \) velocità del flusso del flusso indisturbato a valle del rotore [m\(^2\)]

\(V_z \) velocità del vento alla generica quota [m/s]

\(V_{zr} \) velocità del vento alla quota di riferimento [m/s]

\(y_t \) spessore profilo alare

\(y_{\text{lm}} \) coordinata sulle ordinate della linea media

\(z \) quota alla quale si vuole conoscere la velocità [m]

\(z_r \) quota alla quale è nota la velocità [m]

\(z_g \) altezza di gradiente [m]

\(z_0 \) roughness (rugosità) [m]

\(\vec{w} \) vettore velocità componente assiale del flusso [m/s]

\(w \) velocità relativa del flusso [m/s]
$$\alpha$$ Coefficiente di Helmann [-] o angolo di attacco \([^\circ] \)

$$\beta$$ angolo di calettamento o di Pitch \([^\circ] \)

$$\delta$$ angolo di costruzione \([^\circ] \)

$$\Delta E_{c}$$ variazione energia cinetica

$$\Gamma$$ funzione gamma

$$\lambda$$ Tip Speed Ratio

$$\lambda_{opt}$$ Tip Speed Ratio Optimal

$$\lambda_{r}$$ Local Section Speed Ratio

$$\mu$$ viscosità dinamica dell’aria \([\text{Pa s}] \)

$$\rho$$ densità dell’aria \([\text{Kg/m}^3] \)

$$\rho_{0}$$ densità dell’aria nelle condizioni standard \(=1,225 \) \([\text{Kg/m}^3] \)

$$\sigma$$ solidità

$$\Omega$$ velocità angolare di rotazione del rotore \([\text{rad/s}] \)

ACRONIMI.

ABL Atmospheric Boundary Layer

HAWT Horizontal Axis Wind Turbine

VAWT Vertical Axis Wind Turbine

TSR Tip Speed Ratio

NACA National Advisory Committee for Aeronautics

NREL National Renewable Energy Laboratory

PMG Generatore a magneti permanenti

SQIC Squirrel Cage Induction Generator, avvolgimento statorico semplice

DFIG Double Fed Induction Generator, generatore asincrono a doppia alimentazione

BEMT Blade Element Momentum Theory
INTRODUZIONE

Le vicissitudini sul fronte energetico che il mondo industrializzato sta affrontando in questo ultimo periodo a livello globale, pongono l’accento sulle grandi sfide che l’umanità deve continuamente affrontare per limitare i danni, da essa stessa procurati, che possono condurre la nostra specie verso un alto indice di rischio di estinzione.

La continua evoluzione tecnologica e il comodo stile di vita acquisito e consolidato negli anni, insieme alla necessità di uniformare le ancora precarie condizioni di vita in cui versano i paesi emergenti con lo stato di benessere che da decenni caratterizza una buona fetta della popolazione mondiale, hanno fatto sì che ci si chiedesse a cosa potesse condurre questa fame di energia e se essa potesse essere soddisfatta.

La continua tensione verso il progresso ha portato l’uomo ad utilizzare in modo improprio le risorse che la natura forniva senza pensare troppo all’ambiente e al suo rispetto.

Ciò ha causato problemi che allarmano chiunque sia dotato di un minimo di coscienza ambientale in quanto rischiano di compromettere notevolmente la salute del pianeta che ci ospita, l’unico di cui disponiamo e che finora ci ha assicurato le fonti e i mezzi per progredire.

Fortunatamente negli ultimi anni si è preso coscienza che non si può solo sfruttare incessantemente la natura, senza prendersene cura e senza, in qualche modo, restituirle qualcosa. Un pò come è accaduto all’inizio della civiltà umana quando l’uomo, per ovviare alle necessità imposte dall’esistenza, ha dovuto cambiare la propria vita adattandola per meglio soddisfare i propri bisogni primari. Così ha aggiunto alla caccia, sua attività principale, l’orticoltura, per potersi sostenere anche in periodi di crisi.

Lo stesso principio che regolava la vita dei nostri primi antenati, è alla base della necessità di sfruttare in maniera sana le risorse energetiche di cui disponiamo (è proprio qui che svolge un ruolo determinante il sano sfruttamento delle risorse energetiche) che, trasformate, possono portare alla creazione di energia rinnovabile. Per fare ciò, dobbiamo chiedere aiuto alle moderne tecnologie, sviluppate e gestite correttamente, grazie alle quali è possibile generare energia diversificando la produzione ai fini del contenimento sia dei consumi che delle immisioni inquinanti in atmosfera, distanziandoci così da quelle fonti definite tradizionali, che tanto si differenziano dalle sempre più innovative scoperte.

Lo sviluppo e l’incentivazione di tecnologie che sfruttino le fonti rinnovabili di energia (il vento, il sole, le biomasse, etc.) è dunque da favorire, poiché queste ultime sono in grado di garantire un impatto ambientale più contenuto rispetto a quello prodotto dalle fonti fossili. I principali vantaggi delle fonti rinnovabili sono innumerevoli. Esse sono infatti inesauribili,
rinnovano la loro disponibilità in tempi brevi e il loro utilizzo produce un inquinamento am-bientale del tutto trascurabile.

Tra le fonti di energia alternativa annoveriamo anche l’*energia eolica*. L’energia eolica è l’energia posseduta dal vento, una risorsa costante e presente abbondantemente sul pianeta che sin dai primordi ha favorito nel corso dei secoli una notevole diffusione di macchine che ne sfruttavano le innumerevoli potenzialità. Tali macchine non erano ubicate unicamente in territori particolarmente ventilati, ma in ogni parte del territorio in cui si ritenesse necessario l’utilizzo di potenza meccanica per azionare macine e sistemi di sollevamento dell’acqua, com-e accadeva con i primi mulini a vento, sin dalla loro forma più antica e rudimentale.

Solo negli ultimi decenni si è fatta strada la ricerca di siti ad alta ventosità. In passato infatti, per il modesto livello tecnologico delle installazioni, le località eccessivamente ventose erano il più possibile evitate.

Bisogna attendere gli inizi degli anni 90 per avere un contributo visibile nella produzione di energia da fonti eoliche. In questo periodo infatti lo sviluppo della tecnologia ha portato alla costruzione di macchine di dimensioni tali da favorire la produzione di potenze soddisfacenti che hanno portato, tecnicamente, dal mulino a vento alla odierna turbina eolica o aerogeneratori. Ciò che accomuna questi due congegni sono le caratteristiche estetiche. Entrambi infatti si compongono di un’alta torre e in cima ad essa un rotore. Quest’ultimo costituito da un numero più o meno elevato di pale, che effettuano lo scambio di quantità di moto e generano la coppia aerodinamica.

Il rotore può essere disposto secondo il suo asse di rotazione, perpendicolarmente o paralle-lemente alla direzione del vento e in base all’una o all’altra posizione, distinguiamo rispetti-ivamente turbine ad asse verticale e turbine ad asse orizzontale.

Nel presente lavoro, delle turbine ad asse verticale illustreremo solo la classificazione e il principio di funzionamento, mentre verranno analizzate nello specifico le turbine ad asse orizzontale, essendo le macchine di più comune utilizzo atte a trasformazione di notevoli valori di potenza e sino ad oggi classificate come la tipologia più efficiente dal punto di vista energetico. Un impianto eolico, infatti, secondo la legge di Betz, ha un’efficienza del 59.3%, ossia può produrre solo il 59.3% dell’energia posseduta dal vento che lo attraversa. La sua efficienza dunque, dipende dalla disponibilità del potenziale ventoso e dalle prestazioni della turbina. Queste ultime vengono valutate attraverso l’analisi delle curve di potenza, ossia le tipiche curve caratteristiche della turbina eolica considerate in funzione della velocità di rotazione del rotore oppure al variare della velocità del vento.

Il lavoro del progettista che precede la realizzazione pratica della turbina, prevede, ancor pri-
ma che venga costruito il prototipo, l’assunzione di ipotesi sulle possibili prestazioni della turbina e su un loro di eventuale miglioramento. Questo processo è reso possibile grazie all’utilizzo della modellazione matematica di tipo BEMT, ossia Blade Element Momentum Theory. Il modello BEMT è una teoria sviluppata per l’analisi e il progetto delle turbine eoliche, che combina la teoria dell’elemento di pala e la teoria della quantità di moto. Esso costituisce il modello base su cui vengono poi implementati ulteriori sotto-modelli per tener conto di altri effetti determinanti (tip-losses, non uniformità del flusso, scia...etc).

Sulla base della modellazione BEMT, per ottenere i risultati mostrati in questo lavoro, si è adoperato un programma in Console per Windows, chiamato WindTurbo.

L’obiettivo del presente lavoro di tesi è quello di confrontare le curve caratteristiche della medesima turbina con stessi parametri caratteristici, stesso profilo, stesse condizioni di sitting ma con diverso funzionamento in base al controllo di potenza utilizzato. Difatti, proprio sulla base del diverso funzionamento parleremo di turbina a velocità variabile e con controllo dello stallo, turbina a due velocità di rotazione costanti con controllo di stallo, turbina a velocità di rotazione costante con controllo di stallo e turbina a velocità di rotazione costante ma con controllo di pitch.
CAPITOLO PRIMO

1 IL VENTO, UNA RISORSA.

Il vento è un fenomeno atmosferico conseguenza del processo di riscaldamento del Sole. Il Sole infatti, irradiia sulla Terra 1,74 x 10\(^{17}\) Watt di potenza e di questa circa il 2% viene convertita in energia eolica. La Terra a sua volta, cede all’atmosfera il calore ricevuto dal Sole in maniera non uniforme e genera un gradiente termico tra i poli e l’equatore laddove l’insolazione è rispettivamente minima e massima. Si generano così nell’atmosfera dei moti convettivi che creano una macro circolazione, figura 1. Nelle zone in cui viene ceduto meno calore la pressione dei gas atmosferici aumenta, mentre dove viene ceduto più calore, l’aria diventa calda e la pressione dei gas diminuisce. Si formano così aree di alta pressione (anticiclonica) e aree di bassa pressione (ciclonica), influenzate anche dalla rotazione della Terra. Quando diverse masse d'aria vengono a contatto, la zona in cui la pressione risulta maggiore tende a trasferire aria laddove la pressione è minore, generando correnti aeree orizzontali. Il vento è dunque lo spostamento d’aria, più o meno veloce, tra zone di diversa pressione. Quanto più alta è la differenza di pressione, tanto più veloce sarà lo spostamento d’aria e con esso il vento. In realtà, il vento non segue una traiettoria rettilinea nella direzione dall’alta alla bassa pressione, ma devia verso destra nel nostro emisfero, quello settentrionale, circondando attorno ai centri di alta pressione in senso orario e attorno a quelli di bassa pressione in senso antiorario. Nell'emisfero meridionale invece accade il contrario, figura 2. Questo comportamento del vento era già conosciuto in passato. Il meteorologo olandese C. H. Buys-Ballot (1817-1890) infatti, rilevò che chi volta le spalle al vento ha alla sua sinistra l'area di bassa pressione e alla sua destra quella di alta pressione.

![Figura 1](image.png)
L’aria in movimento dunque, subisce una deviazione verso destra nell’emisfero settentrionale e verso sinistra in quello meridionale. Tale deviazione è conseguenza della rotazione terrestre, come dimostrato nel 1835 dal matematico francese G.G. De Coriolis (1792-1843). Egli asserì infatti, che salvo sulla fascia equatoriale, in qualsiasi altro punto della terra un corpo in movimento risente dell’effetto della rotazione in maniera più sensibile quanto più si è in prossimità dei poli. Cosicché, in una data zona dell’emisfero settentrionale, l’aria che si muove ad esempio verso nord, subisce uno spostamento verso nord-est. Ciò è dovuto al fatto che la zona di superficie terrestre sottostante, durante il percorso dell’aria, ruota in senso antiorario. Se analizziamo infatti la figura 3, notiamo che la particella d’aria da un punto A, diretta verso B, si ritroverà nel punto C, proprio perché la superficie terrestre sottostante durante il movimento dell’aria ruota in senso antiorario. È come se l’aria fosse sottoposta ad una forza, che in realtà non esiste, e per questo viene chiamata apparente (Forza di Coriolis o deviante) e che sembra imprimere alla massa d’aria una spinta verso destra nell’emisfero nord, e verso sinistra nell’emisfero sud. Le forze di Coriolis rappresentano altresì un fattore determinante nella formazione delle tempeste e nel senso di rotazione dei cicloni, in base all’emisfero del pianeta in cui si verifica il fenomeno atmosferico.
Gli effetti sono tanto maggiori quanto maggiore è la velocità dell'aria. La velocità del vento, o intensità, è determinata dal gradiente barico orizzontale, ossia dal rapporto fra la differenza di pressione di due isobare contigue e la loro distanza. Quanto maggiore è il gradiente barico tanto maggiore sarà la velocità di spostamento delle masse d'aria. Il vento dunque sarà più forte quanto maggiore sarà la differenza di pressione tra un’isobara e l'altra, e minore la loro distanza (gradiente forte), e sarà più debole e variabile quanto minore sarà la differenza di pressione fra le due isobare e quanto maggiore sarà la distanza tra loro.

La velocità del vento si esprime in chilometri orari (km/h), metri al secondo (m/s) o in nodi, ogni nodo è pari a 1,852 km/h, e si misura attraverso specifici strumenti detti anemometri. La velocità del vento è alla base della Scala di Beaufort\(^1\), riconosciuta come unità di misura internazionale, che permette una classificazione dei venti sulla base della forza con cui spirano. Sulla base di suddetta scala è possibile classificare la velocità del vento in dodici distinti gradi. A causa della sfericità terrestre e dell’inclinazione dell’asse di rotazione, le basse latitudini vengono riscaldate più dei poli. La differenza di riscaldamento fra i poli e l'Equatore produce una differenza di temperatura, che l'atmosfera tende a riequilibrare attraverso il movimento delle masse d’aria dall'Equatore verso i poli. Questo complesso di correnti aeree atmosferiche dà vita alla circolazione atmosferica. Supponendo che la Terra sia immobile e con distribuzione regolare dei continenti e degli oceani, si avrebbe una circolazione dell’aria nella troposfera, limitatamente alla parte esposta ai raggi del Sole e all’emisfero nord, come indicato in figura 4. Questa circolazione ideale d’aria determina la formazione di una cella nota come cella di Hadley, così chiamata in onore dello scienziato inglese G. Hadley (1685-1768), che nel 1735 tentò di spiegare per la prima volta i fenomeni atmosferici su scala planetaria. Tuttavia, la rotazione terrestre introduce nella circolazione ideale dell’aria ora descritta, una notevole modifica, dovuta anche alla disomogenea distribuzione di continenti e oceani. Per questo, è stato creato il modello di circolazione detto “a tre celle”, schematicizzato in figura 5, che comprende:

- la cella di Hadley
- la cella di Ferrel
- la cella polare

\(^1\) Francis Beaufort fu un ammiraglio inglese vissuto nei primi anni dell’ottocento. La scala da lui inventata è una misura empirica dell’intensità del vento basata sullo stato del mare (ci si riferisce al mare aperto, a grande distanza dalle coste) o sulle condizioni delle onde. Per classificare la forza del vento Beaufort ideò una scala da zero a dodici, crescente secondo la velocità del vento, dell'altezza delle onde marine e degli effetti prodotti.
Nella cella di Hadley, situata nella zona intertropicale, spirano gli alisei, venti regolari in direzione e costanti in intensità. Nella cella di Ferrel, detta anche circolazione zonale che caratterizza la circolazione delle medie latitudini, soffiano i venti occidentali, chiamati così poiché provengono prevalentemente da sud-ovest nell'emisfero boreale e da nord-ovest nell'emisfero australe, si tratta di venti incostanti ed irregolari. Infine, la cella Polare, nelle zone polari, artica e antartica, è caratterizzata da venti orientali (perché provenienti da est), detti anche polari. Nelle zone di confine tra le celle si formano delle correnti a getto in alta quota e delle zone di calma a bassa quota. Le correnti a getto sono venti di alta quota molto forti. Le zone di calma, invece, sono caratterizzate da venti deboli e irregolari di bassa quota.

Sulla base della variazione della direzione i venti sono classificati nel seguente modo:

1. **Costanti**, venti che soffiano tutto l’anno, sempre nella stessa direzione e nello stesso senso;
2. **Periodici**, venti che invertono periodicamente il senso, possono essere a periodo stagionale, come i monsoni o gli etesi, o a periodo diurno, come le brezze;

3. **Variabili o Locali**, venti che soffiano irregolarmente nelle zone temperate tutte le volte che si vengono a formare aree cicloniche o anticicloniche, un esempio sono lo scirocco, il foehn, la bora;

4. **Irregolari o Ciclonici**, vengono così genericamente definiti i venti irregolari, violenti e distruttivi, dotati di movimento vorticoso, come i tornado e gli uragani.

La circolazione d'aria finora descritta si riferisce alla bassa troposfera. In questa porzione di atmosfera il movimento dell'aria come abbiamo visto, è influenzato, oltre che dalla forza di gradiente e dalla forza deviante, anche dai moti convettivi ed in misura maggiore dall'attrito esercitato dal suolo sottostante sull'atmosfera in movimento e dall'attrito derivante dallo scorrimiento fra strati di aria adiacenti. L'effetto dell'attrito sulle particelle d'aria che fluiscono sopra la superficie terrestre è quello di rallentarle, in maniera tanto maggiore quanto più si avvicina al suolo, fino ad arrivare ad una condizione di velocità nulla per quelle a diretto contatto con il terreno. Pertanto la velocità del vento diminuisce progressivamente con l'avvicinarsi al suolo per effetto dell’attrito dell’aria con la superficie terrestre. Lo spessore di atmosfera all’interno del quale si fa risentire questo effetto di rallentamento si chiama *Atmospheric Boundary Layer (ABL)*, ovvero strato limite ambientale. Nello strato limite ambientale la velocità media del vento aumenta con l’aumentare della quota fino ad un’altezza oltre la quale il suo valore si mantiene costante. La quota in cui la velocità media raggiunge il suo valore massimo è definita l’altezza dell’ABL detta anche *altezza di gradiente* (z_g). L’altezza di gradiente non è costante e dipende, in primo luogo, dalla velocità dell’aria e dal tipo di superficie terrestre su cui essa fluisce, inoltre essa tende a crescere all’aumentare delle condizioni di rugosità del terreno. In un qualsiasi luogo dello strato limite atmosferico è evidente in ragione dei rilievi sperimentali che, al variare del tempo e della quota dal suolo, si hanno continue fluttuazioni del valore istantaneo della velocità del vento, che acquisisce un carattere turbolento. Questo è dovuto, in primo luogo, all’interazione tra il vento ed il suolo e, quindi, alla presenza dello strato limite ambientale. In questa regione, infatti, l’impatto tra il flusso d’aria principale (che segue i movimenti sinottici e/o geostrofici dell’atmosfera) ed il suolo, origina vortici di varie dimensioni. Questi si muovono in tutte le direzioni, anche se seguono in prevalenza il vento principale, e per effetto di un processo in cascata sottraggono energia al moto medio della corrente. In particolare, le strutture vorticose più grandi, a carattere prevalentemente inerziale, sottraggono quantità di moto alla corrente indisturbata tra-
sferendola ai vortici più piccoli. Pertanto, la velocità istantanea del vento sarà data da un termine medio (costante nel tempo), che tiene conto del flusso principale, e da un altro termine, a valore medio nullo, che caratterizza la parte fluttuante di velocità e che è legato alla presenza dei vortici. Quest’ultimo termine varia casualmente nel tempo e nello spazio e viene trattato come un processo stocastico stazionario a valore medio nullo, figura 6.

Figura 6 Lo strato limite atmosferico e rappresentazione del profilo verticale di velocità media e fluttuante.

Il profilo verticale di velocità media è il primo parametro che viene considerato per caratterizzare un dato sito geografico. Per determinare tale profilo è necessario conoscere i valori della velocità media del vento (orizzontale) alle varie quote (da 0 metri fino all’altezza di gradiente). Quando non si hanno a disposizione questi dati sperimentali è possibile usufruire di opportune formule ricavate in maniera semi-empirica che, a seguito di opportune ipotesi semplificative, esprimono la relazione che c’è tra la velocità media del vento e l’altezza dal suolo. Le principali formule che descrivono l’andamento di velocità media in funzione della quota sono due:

- *Power law* o legge esponenziale
- *Log law* o legge logaritmica

Legge esponenziale o di potenza.

La legge esponenziale è una legge di derivazione puramente empirica che si usa soprattutto quando l’orografia del terreno e la scabrezza non sono omogenee poiché il terreno presenta molti dislivelli e asperità. La legge di potenza è espressa dalla seguente relazione:

\[
\frac{V_z}{V_{zr}} = \left(\frac{z}{z_r} \right)^a
\]

(1.1)
dove con \(V_z \) si indica la velocità del vento all’altezza \(z \) da trovare, con \(V_{zr} \) la velocità del vento misurata alla quota \(z_r \) di riferimento. Il coefficiente \(a \) detto *esponente di potenza o coefficiente di Helmann* dipende da numerose variabili quali l’altitudine, l’ora del giorno, la stagione e, ovviamente, la scabrezza del suolo. Esistono delle correlazioni fra \(a \) ed altri parametri fisici compresa la scabrezza del suolo, fra cui:

la correlazione fra \(a \) e la quota di riferimento \(z_r \) dove viene misurato il vento \(V_r \) è:

\[
\alpha = \frac{0.37 - 0.88 \ln (U_r)}{1 - 0.88 \ln (z_r/10)}
\]

mentre la correlazione fra \(a \) e il *roughness* \(z_0 \) (valida solo per \(0.0011 \text{ m} < z_0 < 10 \text{ m} \)) è:

\[
\alpha = 0.016 [\log_{10} (z_0)]^2 + 0.096 \log_{10} (z_0) + 0.24
\]

Legge logaritmica.

Nella sua estensione più comunemente usata la legge logaritmica è espressa come:

\[
\frac{V_z}{V_{zr}} = \frac{\ln (\frac{z}{z_0})}{\ln (\frac{z_r}{z_0})}
\]

che è appunto la formula usata per calcolare la velocità del vento a una quota \(z \) partendo da una misura di velocità alla quota \(z_r \) su un terreno con indice di *roughness* \(z_0 \).

Quando si parla di *roughness coefficient* in ambito eolico ci si riferisce alla misura della scabrezza del terreno prendendo la quota zero come riferimento. Misure questo parametro geometricamente è un’operazione particolarmente complicata che quasi mai viene fatta nonostante la grande influenza che questo parametro ricopre nella stima della risorsa ventosa. Per ovviare a questa impossibilità sono state definite delle tavole di riferimento che riportano i valori di *roughness* al variare del tipo di terreno presente. Essa è spesso indicata con \(z_0 \) ed è espressa in metri.
La scabrezza di un terreno z_0 e il suo coefficiente α possono essere determinati sul campo. Data l’ampissimo range di variazione dei loro valori che li rendono di difficile assegnazione arbitaria e la loro influenza enorme sul risultato finale della campagna di misura, per investimenti importanti, è quasi sempre opportuno calcolare queste grandezze in modo da minimizzare al massimo gli errori di stima di produttività. Abbiamo visto come gli andamenti descritti dalle due leggi siano logaritmici o esponenziali con esponenti minori di uno. Entrambe le equazioni di queste due leggi sono univocamente determinabili da 2 punti (per due punti passa un solo logaritmo e una sola iperbole). Per questo motivo è sufficiente installare 2 anemometri che misurino la velocità del vento a due altezze differenti e avremo la misura esatta.

In particolare, date due velocità del vento V_{z1} e V_{z2} a due diverse altezze di misura z_1 e z_2, per ricavare l’indice di scabrezza dalla legge logaritmica (1.4) si dovrà usare la formula:

$$z_0 = e^{\frac{V_{z1}\ln(z_2) - V_{z2}\ln(z_1)}{V_{z1} - V_{z2}}} \quad (1.5)$$

Mentre per ricavare il coefficiente di Helmann si userà la formula:

$$\alpha = \frac{\ln\left(\frac{V_{z2}}{V_{z1}}\right)}{\ln\left(\frac{z_2}{z_1}\right)} \quad (1.6)$$

Un’ultima precisazione è molto importante: considerando che le misure di velocità del vento V_{z1} e V_{z2} saranno caratterizzate da un certo errore, maggiore è la distanza in altezza fra i due punti di misura (che possiamo chiamare Δz), più preciso risulterà il calcolo del parametro di roughness z_0 e/o di α poiché l’errore relativo inciderà sempre meno sulla determinazione della curva man mano che i due punti di misura si allontanano. Per dare un ordine di grandezza si
dovrebbero sempre garantire distanze fra i due anemometri maggiori di $1/3$ dell’altezza totale di misura e comunque maggiori di 5 metri.

Figura 8 Schema di installazione dei due anemometri per determinare α.

Dal punto di vista termodinamico, il vento si comporta come un gas e obbedisce alla legge dei gas ideali. La massa volumica del vento esercita un ruolo complesso su forze e prestazioni della turbina. Essa infatti ha un effetto diretto su potenza, lavoro e forze, dato che questi sono proporzionali ad essa, e un effetto indiretto attraverso il numero di Reynolds che si manifesta a livello di comportamento aerodinamico del rotore modificando il coefficiente di portanza e resistenza. Si consideri l’aria costituita prevalentemente da aria secca, per cui la massa volumica risulta:

$$\rho = \frac{\rho_0 T_0 (\frac{T_0 - L \text{ Seal}}{T_0}) \frac{g}{R \text{C} \text{L}}} {T_0 - L \text{ Seal} L}$$ \hspace{1cm} (1.7)

dove ρ_0 e T_0 rappresentano rispettivamente il valore della densità dell’aria e della temperatura nelle **Condizioni Standard**, pari a 1,225Kg/m3 e 288k, g è l’accelerazione di gravità, R la Co**stante Specifica** dell’ aria secca, 287,05 J/(kg K), L il **Temperature Laps Rate** (gradiente termico verticale) pari a 0,0065 K/m ed infine **Seal** designa l’altitudine del sito.

1.1 RAPPRESENTAZIONE MATEMATICA DEL VENTO.

La determinazione dell’energia eolica potenzialmente sfruttabile richiede un complesso processo di misura e valutazione. La produzione finale di un impianto eolico dipende fortemente dalle caratteristiche anemologiche del sito in cui esso viene installato. Per poter effettuare l’analisi di fattibilità tecnica ed economica è quindi necessario disporre di adeguati dati anemologici. L’acquisizione di tali misure nei siti di interesse viene effettuata mediante registrazioni sistematiche della velocità e della direzione del vento per periodi di tempo abbastanza
lunghi. I dati ottenuti possono essere poi elaborati e rappresentati statisticamente mediante le distribuzioni di frequenza della velocità del vento, semplice e cumulata, figura 9. La rappresentazione grafica della distribuzione di frequenza semplice del vento si presenta nella tradizionale forma a campana con asimmetria a sinistra.

![Figura 9 Tipica distribuzione delle frequenze della velocità del vento, semplice e cumulativa.](image)

La distribuzione della velocità del vento viene comunemente interpretata con i modelli probabilistici di Weibull, figura 10, mediante la funzione densità di probabilità:

\[
F_W(V) = 1 - e^{\left(-\frac{V}{C}\right)^k}
\]

(1.8)

Dove \(C\) è il parametro di scala (m/s) della funzione di Weibull, \(k\) è il parametro di forma e \(V\) è la velocità del vento. Il fattore di forma \(k\) è un parametro adimensionale che tiene conto della “forma” che assume la distribuzione della velocità del vento tramite la funzione gamma \(\Gamma\),

\[
\Gamma = \int_0^\infty e^{-t^k} dt
\]

(1.9)

Generalmente il parametro \(k\) è compreso tra 1 e 4. Nelle regioni a clima temperato ad esempio, è compreso fra circa 1,8 e 2,2, mentre le aree urbane e montuose caratterizzate da ventosità irregolari presentano \(k\) compresi fra 1,3 e 1,8. Fissando \(k=2\) si ricava l’andamento tipico della distribuzione di Rayleigh, particolare distribuzione di Weibull, utilizzata per descrivere il comportamento statistico del vento in condizioni ambientali standard:
Dove \bar{V} è la velocità del vento media.

Al diminuire del coefficiente k, la forma della funzione passa da un andamento quasi normale ad uno di tipo esponenziale. Al contrario, con l’aumentare del parametro di scala il massimo della funzione si sposta progressivamente verso venti di intensità maggiori.

La distribuzione cumulata della frequenza, detta anche curva di durata, ottenuta dai modelli probabilistici definiti precedentemente, permette di individuare in termini di ore/anno il numero delle ore in cui una data velocità viene superata.

La distribuzione di frequenza della direzione del vento è denominata “rosa dei venti”, ed è rappresentata da un diagramma polare. Quest’ultimo si ottiene suddividendo l’orizzonte in settori (solitamente 16) e riportando, per ognuno di essi, segmenti proporzionali al numero di osservazioni in cui il vento ha soffiato da una direzione compresa nel settore in oggetto. In tal modo, è possibile valutare l’esistenza di eventuali direzioni prevalenti, utili per definire la disposizione ottimale degli aerogeneratori.
1.2 L’ENERGIA EOLICA.

La quantità di energia teorica che può essere prodotta da un aerogeneratore è proporzionale all’energia disponibile nel vento, ossia all’energia cinetica posseduta dalla massa d’aria in movimento. L’espressione della potenza disponibile in una vena fluida di sezione A, perpendicolare alla direzione del vento, si può esprimere in termini di prodotto del flusso d’aria (area della superficie per la velocità del vento) e di energia cinetica per unità di volume della vena fluida:

$$P_{\text{disp}} = (AV)^{\frac{1}{2}} \rho V^2 = \frac{1}{2} \rho A V^3$$

La seguente relazione fornisce direttamente il valore teorico della potenza, espresso in Watt, posseduto da una corrente di fluido di densità costante ρ che fluisce con velocità V in tubo di flusso di area trasversale A. La dipendenza di P dal cubo della velocità evidenzia la fortissima influenza che le caratteristiche anemologiche locali hanno sulle prestazioni tecnico-economiche di un aerogeneratore, e come quindi le prospettive di una conveniente utilizzazione dell’energia eolica possano variare moltissimo a seconda delle caratteristiche anemologiche e orografiche del sito. Inoltre, tale aspetto rende evidente l’importanza di una accurata campagna di misurazione del vento, eseguita con strumentazione con alto livello di esattezza. È evidente infine come la produzione di energia eolica aumenti rapidamente al crescere delle dimensioni lineari degli aerogeneratori ($A = \text{superficie del disco rotorico}$).
1.3 *METODI ALTERNATIVI DI MISURA DELLA RISORSA ENERGETICA.*

Di recente stiamo assistendo a un’evoluzione dell’energia eolica che si traduce nella realizzazione di impianti eolici in terreni complessi, in mare aperto per gli impianti off-shore, e in zone caratterizzate da foreste con alberi ad alto fusto. Allo stesso tempo la conoscenza di base sui venti in questi ambienti difficili è talvolta inadeguata e le semplici torri anemometriche diventano sempre più costose al crescere delle altezze, richiedendo interventi di manutenzione altrettanto costosi. Inoltre, lo sviluppo tecnologico che sta caratterizzando il settore degli aerogeneratori ha creato la necessità di determinare il profilo della velocità del vento su tutta l’ampiezza del rotore della turbina, in modo da contrastare l’aumento della discrepanza tra il vento misurato al mozzo e le prestazioni reali. A tale proposito sono stati messi a punto nuovi strumenti e tecniche di rilevamento che permettono di acquisire informazioni sul profilo di velocità del vento fino ad altezze di qualche centinaio di metri dal suolo. Tali sistemi, basati entrambi sull’effetto doppler, sono il *Sodar (Sonic Detection And Ranging)*, basato sulla propagazione del rumore, e il *Lidar (Light Detection And Ranging)*, basato sulla riflessione di un raggio luminoso (laser). Il Sodar è costituito da un trasmettitore/ricevitore collocato a terra che emette nell’atmosfera circostante un breve impulso sonoro, ad una certa frequenza. Il suono si propaga verso l’alto, mentre al tempo stesso una sua parte viene riflessa indietro. Lo spostamento di Frequenza Doppler del segnale ricevuto è proporzionale alla velocità del vento, allineato al percorso di trasmissione sonora. Grazie alla combinazione di tre o cinque di questi impulsi, di cui solitamente uno lungo la verticale e due/quattro inclinati rispetto ad essa, si riesce a determinare il campo di velocità tridimensionale dei valori medi, e di quelli turbolenti. Il Lidar è uno strumento di telerilevamento che offre la capacità di determinare la velocità del vento e la sua direzione ad altezze considerevoli, utilizzando uno strumento posto a terra. Per tale aspetto è simile al Sodar, ma opera attraverso la trasmissione e l’emissione di un raggio luminoso (laser). Il principio di base del Lidar è misurare lo spostamento “doppler” della radiazione diffusa dovuta alla presenza di particolato atmosferico trasportato dal vento, tipicamente costituito da gocce d’acqua, polvere, inquinanti, polline o cristalli di sale. La misurazione della velocità del vento si svolge sulla superficie di un cono dove la profondità varia in funzione della distanza della messa a fuoco. Date le caratteristiche di funzionamento dello strumento, teoricamente il Lidar a differenza del Sodar non richiede il processo di calibrazione tramite l’installazione di un anemometro di riferimento.
1.4 LE RISORSE EOLICHE IN ITALIA.

L’Italia, situata al centro di un bacino chiuso come quello del Mediterraneo, non è interessata
da venti di forte intensità e di andamento regolare che spirano in altre parti della Terra. Il re-
gime dei venti presenta quindi una certa complessità a causa di diversi fattori. La posizione
geografica della nostra penisola, unita alla rilevante presenza sia di catene montuose che di
masse d’acqua, determina una diversa distribuzione stagionale delle pressioni atmosferiche e,
di conseguenza, un diverso andamento dei venti nel corso dell’anno. Inoltre, la configurazione
molto variabile e accidentata del territorio influenza a sua volta sul regime dei venti, rendendo-
lo variabile da regione a regione. Nel complesso, l’Italia può comunque contare, specie nelle
zone mediterranee meridionali e nelle isole, su venti di buona intensità. Tale aspetto è con-
ferrmato da una serie di campagne anemologiche condotte sull’intera penisola, le quali hanno
evidenziato che i siti più idonei allo sfruttamento dell’eolico si trovano lungo il crinale appen-
ninico, al di sopra dei 600 m sul livello del mare e, in misura minore, nelle zone costiere. Le
regioni più interessanti sono pertanto quelle del Sud, in particolare la Campania, Puglia, Molis-
se, Sicilia e Sardegna. Questi dati risultano fondamentali al fine di eseguire un primo calcolo
di producibilità complessiva annua dell’impianto, rappresentando le caratteristiche medie an-
nue del regime di vento interessanti per lo sfruttamento energetico del territorio. L’istituto
RSE\(^2\) stima che il potenziale anemologico della nostra penisola effettivamente sfruttabile, te-
nendo conto di orografia, accessibilità, distanza da rete elettrica e vincoli ambientali, è di circa
6.000 MW su terra ferma, e di circa 2.000 MW di off-shore, considerando in quest’ultimo ca-
so acque con livelli di profondità bassi e intermedi. In figura 12 è mostrato l’atlante eolico
dell’Italia.

\(^2\) http://www.rse-web.it/home.page
Figura 12 Atlante eolico dell’Italia (fonte RSE - Ricerca sul Sistema Energetico).
CAPITOLO SECONDO

2 L’AEROGENERATORE

2.1 CENNI STORICI.

L’uso di impianti eolici concepiti per la produzione di energia meccanica senza l’impiego di forza animale o umana è documentato a partire dal 2000 a.C. Inizialmente tali impianti erano utilizzati per attività elementari quali il pompaggio dell’acqua e la macinatura del grano, ricorrendo alla semplice configurazione meccanica che prevedeva l’albero del rotore posto verticalmente rispetto al terreno. All’albero era agganciato un telaio che sosteneva delle vele in tessuto utili a generare la coppia motrice. L’energia del vento e l’energia dell’acqua sono state le uniche fonti di potenza e lavoro di una certa rilevanza prima dello sviluppo degli impianti a motori termici. Gli impianti eolici non presentavano limiti di installazione. Si localizzavano infatti in ogni parte del territorio, dai centri urbani alle zone agricole, vista la presenza costante della risorsa eolica del vento sull’intera superficie terrestre. Essi si diffusero dall’Est Asiatico e dal medio Oriente sotto forma di macchine analoghe a quelle indicate in figura 1. Queste macchine erano caratterizzate da una velocità di rotazione che variava in funzione della velocità del vento e funzionavano sulla base del trascinamento di elementi aerodinamici sotto forma di vele. Queste però presentavano un limite caratterizzato dal fatto che oltre a generare forza motrice erano anche causa di forze frenanti per metà della rivoluzione attorno all’asse. Ecco perché nel 700 d.C., in Persia, località particolarmente ventilata poiché interessata da venti prevalentemente unidirezionali da Nord a Sud, si è sviluppato un concetto di mulino a vento sempre ad asse verticale ma inserito all’interno di edifici murati da una parete trasversale alla direzione Nord-Sud che chiudeva parzialmente l’ingresso dell’aria per limitare l’azione frenante del vento stesso. Queste configurazioni non permettevano di superare potenze di qualche centinaia di Watt con venti di media intensità. Più tardi in Europa si è sviluppata la tecnologia dei mulini a vento ad asse orizzontale con l’albero di rotazione parallelo alla direzione del vento, introducendo così il concetto di funzionamento a portanza. Questo principio ha portato alla creazione di macchine più complesse dal punto di vista costruttivo e allo stesso tempo ha
permesso di produrre potenze di un ordine di grandezza maggiore rispetto a quelle ad asse verticale operanti con il principio del trascinamento. Le soluzioni di base erano la velocità di rotazione variabile e il calettamento fisso della pala. Quest’ultima era costituita da 4 pale che azionavano un albero motore disposto quasi orizzontalmente per ridurre sforzi e rischi di rotatura a causa di raffiche. L’albero motore attraverso vari meccanismi trasmetteva il moto ad un albero verticale che distribuiva la potenza meccanica alla base della struttura. La prima versione di questa macchina era detta post mill o mulino a pilastro perché era costituita da un’unica struttura portante in legno a più piani. Per orientare il mulino al vento era necessario ruotare l’intero edificio, operazione alquanto difficoltosa e dispendiosa che ha portato nel 1200 in Inghilterra alla diffusione del mulino a vento a torre (tower mill). Questo prevedeva il posizionamento della macchina eolica alla sommità di un edificio costruito in pietra, così solo la parte superiore doveva essere orientata al vento ruotando su se stessa. La torre, in pietra, fungeva anche da struttura di supporto, consentendo così, di innalzare l’asse del rotore sul livello del terreno ed intercettare venti più intensi con conseguente aumento della potenza prodotta.

Durante i secoli le pale dei mulini hanno subito notevoli miglioramenti di tipo aerodinamico-mecanico, spingendo sempre più gli ingegneri dell’epoca a risolvere il problema del controllo della potenza e dell’orientamento. Tutte le soluzioni ricavate prevedevano l’apporto umano. Le potenze prodotte erano comprese fra 5 e 15 KW per venti di circa 7-10 m/s, con punte che raggiungevano anche 40 KW a 20m/s. Negli USA, invece, nel 1854, Halladay sviluppa il famoso Westernmill, una turbina multipala, costituita da un’alta torre di sostegno a traliccio e una girante con timone, utilizzata prevalentemente per il pompaggio dell’acqua. Il periodo di prosperità dei mulini a vento in Europa durò fino al 1900 circa, a causa della nascita degli impianti motore a vapore che li sostituiscano.
L’era elettrica delle turbine eoliche si apre nel 1887 con Charles F. Brush che costruì la prima turbina automatica azionante un generatore in corrente continua per alimentare la sua casa e il suo laboratorio. Successivamente Paul la Cour nel 1891 realizzò la prima macchina connessa alla rete elettrica da 25 KW, ispirata ai moderni principi di progettazione. Un suo allievo, Johannes Juul, negli anni ’50 costruì gli impianti di Vester Egesborg, la prima centrale eolica europea in grado di immettere in rete corrente alternata, sviluppando una turbina Gedser tripala da 200KW.

Gli anni ’70 segnano l’avvento dell’era moderna dei mulini a vento, in cui si fa strada l’attuale concetto di “parco eolico”. Dieci anni dopo, grazie agli USA si è dato il via alla realizzazione di macchine con taglie di MW. Fino ad arrivare, negli ultimi anni, a soluzioni tecnologicamente avanzate. Abbiamo assistito infatti allo sviluppo di materiali compositi per l’alleggerimento e la resistenza del rotore sotto l’azione di venti ad elevata intensità, e di avanzati sistemi di controllo della potenza. Basti pensare che la Alstom, azienda leader nel settore energetico a livello mondiale, ha realizzato una turbina marina con un rotore di 150 metri di diametro per raggiungere una potenza di 6MW, aprendo così la frontiera dei parchi marini. Su questi ultimi e sul mini eolico per uso domestico verterà l’attenzione dell’intera tecnologia d’avanguardia mondiale per il futuro.

Figura 4 Il famoso Western mill.

Figura 5 Una moderna turbina eolica.
2.2 **GENERALITÀ**.

La turbina eolica detta anche aerogeneratore è la macchina per eccellenza che trasforma l’energia cinetica di un flusso d’aria in lavoro meccanico ed eventualmente converte quest’ultimo in lavoro elettrico. Le masse d’aria in movimento fanno girare le pale di un’elica, queste a loro volta sono collegate ad un generatore che trasforma l’energia meccanica in energia elettrica. Le pale del generatore eolico sono fissate su un elemento meccanico definito mozzo con il quale formano l’elemento dell’aerogeneratore chiamato rotore. Le turbine eoliche sono svariate e classificabili in funzione della tipologia d’impiego e dell’energia sfruttata, della posizione dell’asse di rotazione, della taglia di potenza, del numero di pale e di molti altri fattori. Un’importante classificazione delle turbine è quella che distingue tra asse orizzontale e asse verticale, a seconda della posizione dell’asse attorno a cui ruota il rotore. Riconosciamo quindi:

- Turbine ad asse verticale – **VAWT** (*Vertical Axis Wind Turbine*)
- Turbine ad asse orizzontale – **HAWT** (*Horizontal Axis Wind Turbine*)

Nella categoria delle **VAWT**, rientrano turbine di semplice costruzione, che non presentano problemi di orientamento, hanno una struttura autoportante, un minor costo, ma minore efficienza e maggiori sollecitazioni. Distinguiamo quindi:

- Turbine di tipo **Savonius**
- Turbine di tipo **Darrieus**
- Turbine ibride **Darrieus-Savonius**

Nella categoria delle turbine **HAWT** invece, rientrano innanzitutto quelle caratterizzate da una tecnologia ormai collaudata dall’esperienza che le rende altamente efficienti e quindi in grado di ricavare maggiori valori di energia per un dato ingombro frontale. Esse inoltre non presentano problemi di avviamento, di orientamento e di trasmissione di energia elettrica al suolo. Distinguiamo:

- Turbine sopravento (*upwind*)
- Turbine sottovento (*downwind*)

Nella pratica le turbine ad asse orizzontale sono estremamente più diffuse di quelle ad asse verticale, che non hanno raggiunto un livello di affidabilità e di resa che le renda competitive rispetto alle prime e per questo motivo maggiormente utilizzate nel micro-eolico.
2.3 **TURBINE AD ASSE VERTICALE.**

Esistono diversi modelli di turbina ad asse verticale, che possono essere classificati in due categorie, in base al principio sfruttato per produrre la coppia di rotazione: turbina a *resistenza* e turbina a *portanza*.

La **figura 6**, raffigurante un rotore Savonius, è un tipico esempio di *turbina a resistenza*. Per questo modello le pareti curve disposte emisimmetricamente generano una differenza di resistenza che è sempre attiva nel senso della rotazione. Indipendentemente da come è strutturata la turbina, una parte di essa ruoterà in direzione opposta al vento e una a favore. La turbina Savonius concentra i suoi focus progettuali per evitare questo problema: essa è infatti costituita da due semigusci (nella versione più semplice) i quali non sono però uniti al rotore della turbina, bensì sono disposti in modo che una parte dei semigusci sia in comune e faccia fluire l’aria di spinta anche nella parte controvento.

![Savonius-Rotor](image)

Figura 6 Rotore Savonius.

Nel caso delle turbine a portanza (rotore Darrieus), le pareti sono dei profili aerodinamici disposti in un piano orizzontale e liberi di ruotare intorno ad un asse verticale. Questo tipo di turbina è analoga a quelle ad asse orizzontale e viene analizzato con le stesse teorie aerodinamiche. Tuttavia lo studio delle turbine a portanza è piuttosto complesso a causa del fatto che durante la rotazione nel piano orizzontale la disposizione dei profili alari rispetto al vento cambia ciclicamente cambiando periodicamente l’incidenza. Il problema di questa tipologia di turbine è l’avviamento, in quanto la coppia ottenibile a fermo è nulla qualunque sia l’intensità del vento, e la turbina non è in grado di avviarsi spontaneamente, quindi deve
essere avviata con un motore ausiliario che la porti ad una velocità minima di rotazione per l’autosostentamento. Per le turbine Savonius ciò non avviene poiché la differenza di resistenza offerta dal vento dalle due superfici curve esiste anche a macchina ferma garantendo l’avvio spontaneo della macchina. L’efficienza delle turbine a portanza è più alta di quella delle turbine a resistenza, ma resta sempre inferiore a quella delle turbine ad asse orizzontale. Questo perché durante una parte della rotazione la pala è inefficiente e l’energia del vento non può essere sfruttata.

2.4 TURBINE AD ASSE ORIZZONTALE.

La struttura di un generatore eolico con rotore ad asse orizzontale è semplice: presenta infatti un sostegno (formato da fondamenta e torre) che reca alla sua sommità una gondola o navicella. In questo involucro sono contenuti l’albero di trasmissione lento, il moltiplicatore di giri, l’albero veloce, il generatore elettrico, i dispositivi di controllo e ausiliari. All’estremità dell’albero lento è fissato il rotore, costituito dal mozzo sul quale sono montate le pale. La forma delle pale è disegnata in modo tale che presentano profili geometrici differenti, così che il flusso dell’aria che le investe crea in corrispondenza della superficie superiore una zona di depressione rispetto alla pressione sulla faccia inferiore. Questa differenza di pressione produce sulla superficie della pala eolica una forza chiamata portanza aerodinamica, analogamente a quanto accade per le ali degli aerei, azionando così il rotore. Dal rotore, l’energia cinetica del vento viene trasmessa a un generatore di corrente. Quindi il generatore eolico funziona a seconda della forza del vento.

Figura 7 Interazione flusso ventoso – pala del rotore eolico.
2.5 **ANALISI DEI COMPONENTI DI UNA TURBINA HAWT.**

I principali componenti che costituiscono un aerogeneratore ad asse orizzontale sono, *figura 8*:

1. Pala;
2. Supporto della pala;
3. Attuatore dell’angolo di Pitch;
4. Mozzo;
5. Ogiva;
6. Supporto principale;
7. Albero principale;
8. Luci di segnalazione aerea;
9. Moltiplicatore di giri;
10. Dispositivi idraulici di raffreddamento;
11. Freni meccanici;
12. Generatore;
13. Convertitore di potenza e dispositivi elettrici di controllo;
14. Trasformatore;
15. Anemometro;
16. Struttura della navicella;
17. Torre di sostegno;
18. Organo di azionamento dell’imbardata.

Figura 8 Schematizzazione dei componenti che costituiscono l’aerogeneratore.
Le pale delle turbine sono l’organo primario della conversione energetica e ad essa è affidata gran parte dell’efficienza globale del sistema eolico, per cui sono progettate con un profilo tale da massimizzare l’efficienza aerodinamica. I profili aerodinamici sono studiati per un’elevata efficienza e in una gamma con prestazioni e caratteristiche molto diverse, che offrono un’ampia scelta per ogni applicazione. I profili adoperati per la realizzazione delle pale di una turbina eolica sono spesso della serie NACA ma anche di origine diversa, come quelli del NREL oppure del FFA o addirittura appositamente disegnati. Inoltre è anche fondamentale conciliare nella fase progettuale delle pale la resistenza con il peso, soprattutto per grandi dimensioni, nonostante esse siano cave. Il peso incide sugli sforzi interni alle pale e su quelli trasmessi al sistema meccanico (albero, cuscinetti e rotore) e ha conseguenze sulla torre e sulle fondamenta. Durante la rotazione le sollecitazioni variano ciclicamente, sollecitando a fatica il sistema eolico. A ciò aggiungiamo anche le sollecitazioni prodotte dalla forza centrifuga e dalle azioni aerodinamiche. Queste ultime sono anch’esse periodiche in quanto le pale ruotano nello strato limite terrestre e quindi incontrano flussi di vento a velocità diverse. Altre sollecitazioni a fatica sono causate dalla turbolenza del vento, ossia dal fatto che la velocità del vento subisce variazioni su breve scala dei tempi esercitando sollecitazioni variabili. L’intensità della turbolenza comporta una sensibile fluttuazione delle azioni aerodinamiche. In definitiva, le pale devono essere resistenti ma anche leggere e flessibili, ecco perché si adottano materiali leggeri, quali i materiali plastici rinforzati in fibra, con buone proprietà di resistenza all’usura. Le fibre sono in genere di vetro o alluminio per le pale di aerogeneratori medio - piccoli, mentre per le pale più grandi vengono utilizzate le fibre di carbonio nelle parti in cui si manifestano i carichi più critici. Le fibre sono inglobate in una matrice di poliestere, resina epoxidica o a base di vinilestere costituenti due gusci uniti insieme e rinforzati da una matrice interna. La superficie esterna della pala viene ricoperta con uno strato levigato di gel colorato, al fine di prevenire l’invecchiamento del materiale composito a causa delle radiazioni ultraviolette. Per limitare le sollecitazioni sulle pale, vengono adoperati due piccoli accorgimenti, ossia l’angolo conico (cone angle) e l’angolo di inclinazione (tilt angle). Il primo bilancia le azioni aerodinamiche con quelle centrifughe, sollecitando la pala a trazione semplice, mentre il secondo garantisce la giusta distanza tra la pala e la torre, potendo così utilizzare dimensioni non eccessive per l’albero di trasmissione. Le pale dispongono anche di alcuni dispositivi aerodinamici applicati su di esse per estenderne o limitarne le prestazioni. Si tratta dei generatori di vortici, promotori di turbolenza (stall strips), alette di estremità, ap-

![Image](image.png)

Figura 9 Dino Shells, Dino Tails e Vortex Generator.

Le DinoTails sono flap segghettati che consentono di mantenere minime le emissioni acustiche e allo stesso tempo di aumentare la portanza. Sono collocate vicino alla punta della pala, la parte più rumorosa a causa dell’alta velocità raggiunta. Inoltre, questa è la parte della pala che vale maggior produzione di energia. Le DinoShells, invece, appartengono alla famiglia dei dispositivi che aumentano la forza di portanza, in quanto sfruttano il principio del *flap di Gurney*³. Il *flap di Gurney* è una piccola appendice, opportunamente angolata, che viene applicata al bordo d'uscita alare. Questo dispositivo fu introdotto da Dan Gurney, ed è molto efficace nell’aumentare la deportanza a fronte di un piccolissimo aumento della resistenza aerodinamica. Un altro effetto è quello di creare due vortici controrotanti immediatamente dietro il flap: ciò causa un calo nella pressione totale che aiuta a mantenere il flusso attaccato alla superficie del profilo, consentendo di raggiungere maggiori angoli di attacco senza che si verifichi un distacco di vena e quindi uno stallo. I Vortex Generators sono turbolatori aerodinamici. I turbolatori sono progettati per migliorare il flusso dell’aria sulle pale delle turbine. In linea generale un turbolatore è un dispositivo che interrompe il flusso laminare su una superficie aerodinamica provocandone il distacco dalla stessa. A valle del turbolatore il flusso si riattacca alla superficie e prosegue in maniera turbolenta. Il flusso laminare, quando rimane attaccato alla superficie, genera minore resistenza rispetto ad un flusso turbolento, il primo però tende a staccarsi con maggiore facilità rispetto al secondo al diminuire della velocità e all’aumentare

³ Dan Gurney è un ex pilota automobilistico statunitense. Ha corso in vari campionati internazionali e ad esso sono legati due componenti accessori delle auto da corsa con cui ha corso: il *Flap di Gurney* e la *Gurney bubble*.

24
dell’angolo di attacco. Il flusso dopo essersi staccato, può riattaccarsi alla superficie in un punto più a valle, tra i due punti si forma una “bolla” che modifica la forma del profilo incrementando di molto la resistenza. Con l’aumentare dell’incidenza ed il diminuire del numero di Reynolds questa bolla può allungarsi fino al bordo di uscita provocando lo stallo. L’uso classico dei turbolatori consiste nell’applicare in una data posizione sul profilo alare, generalmente fra il 20% e il 30% della corda nelle sezioni di radice, una striscia adesiva che forma lo scalino sufficiente a forzare la transizione del flusso da laminare a turbolento ed a prevenire il formarsi delle famigerate “bolle di separazione”, che in condizioni di bassa velocità ed elevata incidenza causano un aumento di resistenza maggiore di quella provocata dal turbolatore stesso.

Per la protezione da fulminazione delle pale, l’obiettivo primario è di condurre la corrente di fulmine dal punto di scarica al mozzo evitando la formazione di archi elettrici interni. Per ottenere ciò si guida la corrente di fulmine utilizzando conduttori metallici di sezione opportuna fissati sulla superficie o interni alla pala oppure aggiungendo una maglia metallica interna alla superficie della pala.

Ai fini dell’efficienza e anche allo scopo di contenere il costo della macchina è maggiormente indicato avere il minimo numero possibile di pale. Per tale ragione sono state realizzate turbine bipala e monopala. Tuttavia le turbine di grande potenza sono realizzate a tre pale, poste a 120° l’una dall’altra, e rappresentano la tipologia dominante sul mercato. Esse sono preferibili in termini di prestazioni, di stabilità dinamica del rotore ed in termini di impatto visivo. Infatti, a parità di potenza una macchina tripala ruota più lentamente di un bipala o monopala generando meno fastidio alla vista e minor rumore. Inoltre le turbine bipala, con pale poste a 180°, presentano problemi al carico dinamico poiché quando la pala superiore sopporta il massimo carico, quella inferiore è sottoposta al minimo carico, subendo anche l’effetto di schermo della torre. Per questo devono dotarsi della tecnologia “teetering hub” (mozzo basculante). Esse ruotano a velocità più alta della tripala generando maggiore impatto visivo e sonoro. A livello economico inoltre, si risparmia semplicemente il costo di una pala. Le monopala presentano tutti i problemi delle bipala, sia di carico dinamico che di impatto ambientale. In realtà avendo una velocità di rotazione ancora maggiore rispetto ad esse, i problemi si accenutano. Per esse si risparmia il costo di due pale ma è necessario inserire un bilanciere, per bilanciare le forze centrifughe.
2.5.2 *IL MOZZO.*

Il mozzo in una turbina eolica è il componente che connette le pale all’albero principale tramettendo ad esso la potenza estratta dal vento ed inglobando i meccanismi di regolazione dell’angolo di Pitch. Il mozzo è solitamente di acciaio o di ferro a grafite sferoidale ed è protetto esternamente da un involucro di forma ovale chiamato *ogiva*. Ci sono tre tipi principali di mozzo(figura 10):

- rigido;
- oscillante (teetering);
- per pale incernierate.

![Figura 10 Schematizzazione dei tre tipi di mozzo.](image)

Il mozzo rigido è progettato per mantenere le principali parti che lo costituiscono in posizione fissa rispetto all’albero principale. L’angolo di Pitch delle pale può comunque essere variato, ma non è consentito alcun altro movimento. È di fatto il tipo più utilizzato nei rotori a tre o più pale. Il mozzo oscillante è utilizzato in quasi tutte le turbine a due pale ed è progettato per ridurre i carichi aerodinamici sbilanciati trasmessi all’albero tipici dei rotori bipala, consentendo al rotore di oscillare di alcuni gradi rispetto alla direzione perpendicolare all’asse di rotazione dell’albero principale. Infine il mozzo per pale incernierate è, per certi versi, una via di mezzo tra i primi due modelli ed è di fatto un mozzo rigido con vincoli a cerniera per le pale ed utilizzato dalle turbine sottovento per ridurre i carichi eccessivi durante i forti venti.

2.5.3 *IL MOLTIPLICATORE DI GIRI.*

Per sistemi interfacciati a reti locali o nazionali, la velocità dell’asse del rotore non è sufficiente perché il generatore elettrico produca elettricità alla frequenza della rete elettrica (50
Hz in Europa), quindi un sistema di moltiplicazione trasferisce il movimento ad un “albero veloce”, adattandolo ai valori richiesti dai generatori convenzionali. Il *moltiplicatore di giri* detto anche *gearbox*, è formato da una o più coppie di ingranaggi di tipo epicycloidale o ad assi paralleli ad uno o più stadi. Per una turbina eolica il numero di giri risente fortemente del diametro, diminuendo al crescere di quest’ultimo. Il rapporto di trasmissione cresce con la potenza della macchina e quindi con il diametro, arrivando anche a valori di 1:100. Questo comporta un notevole peso del gearbox, che si ripercuote sul proporzionamento della torre di sostegno, oltre al fatto che è fonte di rumore ed è anche uno degli elementi che richiede maggior manutenzione e che può causare perdite di efficienza dell’aerogeneratore. Pertanto l’assenza del moltiplicatore comporta una semplificazione rilevante della parte meccanica e consente una riduzione della dimensione e della massa della navicella. Ragion per cui si è cercato di abolirlo accoppiando la turbina direttamente al generatore.

2.5.4 LA STRUTTURA DI SOSTEGNO.

Le turbine eoliche vengono montate su di una struttura di sostegno, chiamata torre, ad un’altezza relativamente grande da terra. Questo allo scopo di raccogliere il flusso d’aria in una zona che non risenta dell’effetto dell’attrito al suolo e che possa avere quindi maggiore intensità e possa trasferire una più importante quantità di energia. L’altezza della torre varia in funzione del diametro della turbina e delle caratteristiche del sito di installazione. Per impianti on-shore l’altezza vale circa 1,2 volte il diametro mentre per quelli off-shore si ha circa 0,8. La struttura di sostegno deve innanzitutto supportare le sollecitazioni trasmesse dalla macchina stessa e le azioni di spinta del vento, oltre che sostenere l’intero peso della navicella. Le più diffuse soluzioni adoperate per le turbine ad asse orizzontale sono:

- *a traliccio*;
- *tubolari*.
Le torri odierne sono per la maggior parte di tipo tubolare poiché non necessitano di numerose connessioni tramite bulloni che devono poi essere controllate periodicamente, in aggiunta, forniscono un’area protetta per l’accesso alla turbina, la salita sulla navicella è più sicura ed agevole tramite scala interna o ascensore nelle turbine più grandi e sono esteticamente più piacevoli rispetto ai tralicci. Di solito sono costruite in acciaio laminato, anche se alcune sono in cemento. Hanno una forma conica, con il diametro alla base maggiore di quello alla sommità e le diverse sezioni sono collegate tra loro da flange imbullonate. Le torri sono infisse nel terreno mediante fondazioni costituite in genere da plinti di cemento armato collocati ad una certa profondità. In base alla posizione della torre rispetto al rotore si distinguono: le turbine sopravento (upperwind) e le turbine sottovento (downwind). Le turbine ad asse orizzontale sopravento, così chiamate perché il vento incontra prima il rotore rispetto alla torre, hanno un’efficienza maggiore rispetto a quelle sottovento, poiché non vi sono interferenze aerodinamiche con la torre. Per contro presentano lo svantaggio di non essere autoallineanti rispetto alla direzione del vento e necessitano quindi di una pinna direzionale o di un sistema d’imbardata. Le turbine ad asse orizzontale sottovento risentono degli effetti negativi dell’interazione torre-rotore, ma sono intrinsecamente autoallineanti ed hanno la possibilità di utilizzare un rotore flessibile per resistere ai venti forti.
2.5.5 **IL GENERATORE ELETTRICO.**

E’ uno dei componenti più importanti del sistema eolico. La sua funzione è quella di trasformare l’ energia meccanica fornita dal rotore in energia elettrica. Può essere collegato all’albero principale in modo diretto oppure interponendo un moltiplicatore di giri. I generatori delle turbine eoliche sono molto particolari e sofisticati, in quanto devono adempiere ai vincoli aerodinamico ed elettrico. Il primo richiede che la velocità di rotazione possa variare in funzione della ventosità per ragioni di miglior efficienza, il secondo invece obbliga alla proporzionalità tra la corrente di frequenza prodotta e il numero di giri del generatore stesso. I generatori che normalmente vengono usati in ambito eolico sono di tipo sincrono e asincrono.

2.5.6 **IL GENERATORE SINCRONO.**

In questo tipo di generatore, chiamato anche *alternatore*, il campo magnetico rotante è generato da un elettromagnete a *corrente continua* (generatore sincrono ad avvolgimenti) o da *magneti permanenti* (*PMG*). La caratteristica fondamentale dei generatori sincroni è che la velocità di rotazione è fissa ed esattamente proporzionale alla frequenza della rete elettrica interconnessa. La frequenza della tensione indotta sullo stator (e quindi della corrente prodotta) è direttamente proporzionale alla velocità di rotazione del rotore, per cui vale la relazione:

\[f(\text{Hz}) = \frac{p N_g}{60} \]

(2.1)

Quindi una turbina eolica collegata direttamente alla rete mediante un generatore sincrono diventa una macchina funzionante a velocità di rotazione costante. Per consentire un funzionamento a velocità variabile, si interpone tra alternatore e rete un *convertitore* di frequenza. Questo, mediante un raddrizzatore elettronico, trasforma dapprima la corrente a frequenza variabile in uscita dal generatore, in corrente continua e successivamente riconverte la corrente continua in corrente alternata a frequenza di rete tramite un *inverter*. Così facendo si svincola la frequenza della corrente generata dalla frequenza di rete ed è possibile evitare l’uso del moltiplicatore (*attacco diretto*), grazie alla possibilità di abbassare il numero di giri elevando il numero di poli (*multipoli*), o eventualmente utilizzare moltiplicatori a rapporti di trasmissione ridotti. Ecco perché nel campo eolico è di frequente utilizzo l’*alternatore a magneti permanenti*, dove il campo magnetico rotante è prodotto da un magnete permanente anziché dall’eccitazione di un elettromagnete. I vantaggi di quest’applicazione sono la semplicità co-
struttiva, un maggiore rendimento e velocità di avviamento molto più basse rispetto a turbine che utilizzano la tipologia ad avvolgimento. Queste ultime richiedono infatti una velocità di rotazione minima per generare la giusta corrente di eccitazione così che la turbina sia in grado di produrre energia elettrica. Gli svantaggi risiedono nel non poter controllare la forza del campo magnetico e nel costo, che è piuttosto ragguardevole, soprattutto dei magneti permanenti, poiché è indispensabile un’ottima qualità e un numero piuttosto elevato di essi per ottenere una configurazione ad alte prestazioni. Una configurazione che sta diventando uno standard nelle recenti applicazioni è quella della macchina a flusso radiale (RFPM) che offre un’elevata efficienza a costi ragionevoli. Un aspetto da non tralasciare del generatore sincrono è che esso è in grado di produrre potenza reattiva, utile per il controllo della potenza in rete.

2.5.7 **IL GENERATORE ASINCRONO.**

Tale denominazione deriva dal fatto che non sono univocamente dipendenti dal valore della frequenza, come avviene per le macchine sincrone. Sono chiamate anche macchine ad induzione perché uno degli avvolgimenti è sede di correnti indotte da parte di un altro avvolgimento collegato alla rete e quindi alimentato a corrente alternata a frequenza fissa. Tali correnti creano nel traferro un campo elettromagnetico rotante al numero di giri di sincronismo imposto dalla frequenza di rete. Si ha generazione di energia elettrica solo se il campo magnetico del rotore ruota più velocemente del campo magnetico dello statore, altrimenti la macchina funge da motore. La differenza relativa tra la velocità di sincronismo e la velocità effettiva di rotazione è chiamata *scorrimento* (s) che nel funzionamento da generatore diventa quindi negativo. In questa condizione, mentre eroga potenza attiva verso la rete prevalente, assorbe contemporaneamente potenza reattiva per tenere alimentato il campo magnetico rotante. L’assorbimento di potenza reattiva in misura dipendente dalla tensione e dalla potenza generata è un limite significativo per questo tipo di generatore, perché impone l’obbligo di utilizzo solo nelle grandi reti elettriche, dove la potenza reattiva è prodotta da altre fonti. I generatori ad induzione sono macchine molto diffuse nel settore eolico, sia connesse direttamente alla rete sia accoppiate a sistemi elettronici che ne modificano il comportamento elettrico. Generalmente gli avvolgimenti collegati alla rete sono sullo statore e il rotore è l’induttore. Quest’ultimo può essere del tipo *a gabbia di scoiattolo* o *ad avvolgimento*. Nella tipologia a gabbia di scoiattolo il rotore è ricavato con una serie di sbarre di rame cortocircuitate mentre lo statore presenta i circuiti che costituiscono gli avvolgimenti. Questi possono essere sempli-
ci o doppi. Il generatore asincrono a gabbia di scoiattolo con *avvolgimento statorico semplice* (**SQIG** – *Squirrel Cage Induction Generator*) si differenzia poco dal generatore sincrono, in quanto richiede sempre l’impiego del moltiplicatore, inoltre la velocità di rotazione deve essere sostanzialmente costante, poiché lo scorrimento è di circa l’1%. È una tipologia non molto impiegata nel campo eolico, a differenza di quella ad *avvolgimento statorico doppio*, dove i due distinti avvolgimenti hanno un diverso numero di poli, garantendo alla stessa frequenza due diverse velocità di sincronismo. Si ha così la possibilità di avere due velocità di rotazione della turbina e quindi due punti di funzionamento ottimali, sempre interponendo il riduttore tra il generatore e l’albero principale. Per la tipologia a rotore avvolto vi è un normale avvolgimento sul rotore, simile a quello di stator, di tipo aperto con le estremità facenti capo ad anelli isolati e calettati sull’albero, che permettono attraverso spazzole striscianti, il collegamento elettrico con le parti fisse. Gli avvolgimenti dello stator sono connessi direttamente alla rete a corrente alternata, mentre quelli del rotore sono collegati ad un convertitore con una potenza che dipende dall’estensione del campo di velocità di rotazione che si vuole ottenere. La corrente di magnetizzazione dello stator, la quale crea il campo magnetico rotante al trasfero, è fornita dalla rete stessa, mentre quella sul rotore viene dal convertitore. Ciò spiega la denominazione di *generatore asincrono a doppia alimentazione* (**DFIG** – *Double Fed Induction Generator*). In tal modo la velocità di sincronismo è funzione della differenza tra la frequenza di rete e la frequenza della corrente rotorica. Per questa configurazione sono di diffusa applicazione il sistema a *energia dissipata* e quello a *energia recuperata*. Il primo sistema dissipa l’energia assorbita dagli anelli di slittamento in un resistore. Lo slittamento non può essere elevato: al massimo del 10%, valore utile per assorbire ed attenuare le raffiche di vento. Il secondo sistema scambia l’energia assorbita con la rete anziché dissiparla. Ciò si rende possibile inserendo dei commutatori IGBT (**Insulated Gate Bipolar Transistor**) nel convertitore. Questi commutatori, sotto il controllo della tensione di rete danno doppio accesso all’energia, cioè la possibilità di “scambiare” energia con la rete stessa. Questo scambio energetico porta ad avere uno slittamento che può arrivare a ± 25%. Questo si traduce nella possibilità di raggiungere variazioni di velocità del 50%. Adottando poi un doppio avvolgimento si può avere una variazione totale di velocità del 100%. In questo modo attraverso il convertitore transita solo il 25% della potenza, abbattendo così le dimensioni prestazionali e quindi il costo.
2.5.8 **IL TRASFORMATORE.**

La potenza elettrica in uscita dal generatore è solitamente in bassa tensione e deve essere convertita in media tensione, in genere 690V, attraverso un trasformatore per ridurre le perdite di trasmissione mediante l’allacciamento alla rete di distribuzione in media tensione. Il trasformatore è installato nella navicella o alla base della torre. Un ulteriore trasformatore esterno eleva ulteriormente la tensione prima di inviare la corrente nella rete elettrica.

2.5.9 **DISPOSITIVI AUSILIARI.**

I principali dispositivi ausiliari comprendono dispositivi idraulici per lubrificare il moltiplicatore di giri o le altre parti meccaniche e scambiatori di calore per il raffreddamento dell’olio e del generatore. Inoltre sulla sommità della navicella sono installati uno o due anemometri per determinare intensità e direzione del vento e delle luci di segnalazione per gli aerei. Fanno parte di questi dispositivi anche i freni di sicurezza. Quasi tutte le turbine montano dei freni meccanici lungo l’albero di trasmissione in aggiunta al freno aerodinamico. In molti casi i freni meccanici, progettati per rispondere a tempi di arresto inferiori a 5 secondi, sono in grado di arrestare il rotore in condizioni meteorologiche avverse, oltre che svolgere la funzione di “freni di stazionamento” per impedire che il rotore si ponga in rotazione quando la turbina non è in servizio per almeno 1 ora dalla loro attivazione. Comunemente sono due i tipi di freni meccanici utilizzati: *freni a disco* e *freni a frizione*.

2.5.10 **DISPOSITIVI DI CONTROLLO.**

Per un sicuro ed efficiente funzionamento dell’aerogeneratore tutti i componenti che lo costituiscono devono poter operare in maniera unisona tra di loro. Per fare questo è opportuno che il tutto sia governato da un sistema di controllo, con lo scopo di gestire il funzionamento in maniera automatica, fornendo una risposta tempestiva ad ogni variazione delle condizioni operative e riducendo al contempo i costi operativi, garantendo così una migliore qualità del servizio. Distinguiamo due tipi di sistemi di controllo: il *supervisory control* e il *dynamic control*. Il primo è il mezzo con cui la turbina passa da uno stato operativo ad un altro. I possibili stati operativi possono essere:
• standby, la turbina è disponibile all’esecuzione se le condizioni esterne lo permettono;
• start up;
• power production;
• shut-down, arresto a causa di vento debole;
• stopped with fault.

Inoltre esso monitora le condizioni del vento ed eventuali guasti dovuti agli alti carichi per condizioni limite di operatività e fornisce gli input di controllo ai controllori dinamici della turbina, quali per esempio, il rapporto della velocità di punta o il numero di giri desiderato. Il dynamic control invece gestisce gli aspetti del funzionamento della macchina laddove la dinamica influenzì l'esito delle azioni di controllo. I sistemi di controllo dinamici ad esempio vengono utilizzati per regolare il passo delle pale così da ridurre le coppie di trasmissione, per controllare il flusso di corrente del convertitore elettronico di potenza o per controllare la posizione di un attuatore. I controllori dinamici fanno continui aggiustamenti ad alta velocità agli attuatori e ai componenti della turbina poiché essi sono in grado di reagire ai cambiamenti ad alta velocità in condizioni di esercizio. Un controllore dinamico gestisce solo e soltanto uno specifico sottosistema della turbina, lasciando il controllo di altri sottosistemi ad altri controllori dinamici. Ciascuno di questi controllori aziona attuatori o interruttori che influenzano alcuni aspetti del sottosistema della turbina e quindi il complessivo funzionamento della stessa.

I sistemi di controllo variano significativamente per ogni turbina eolica poiché essi dipendono in modo significativo dal progetto della turbina stessa. Solo un aspetto è considerato univoco, ed è quello di realizzare una migliore conversione di energia meccanica in energia elettrica garantendo una buona sicurezza costruttiva. Ciò significa, massimizzare la coppia aerodinamica per velocità del vento al di sotto di quella nominale, con conseguente ottimizzazione della potenza estratta, e modulare tale coppia se la velocità è al di sopra di quella nominale, mantenendo la velocità di rotazione entro limiti accettabili e limitando la potenza massima. L’ottimizzazione della potenza è possibile facendo variare la velocità di rotazione della turbina, mentre la limitazione la si ottiene cercando di ridurre la capacità del rotore di estrarre lavoro con l’ausilio dei dispositivi di controllo:

• pitch control;
• stall control;
• yaw control.
Per comprendere meglio l'integrazione dei sistemi di controllo in una moderna turbina eolica si considera un modello meccanico comprendente una massa rotante ad elevato momento d’inerzia, che rappresenta il rotore, ed una massa rotante che rappresenta il generatore, entrambe collegate tramite l’albero di rotazione, figura 13.

Figura 13 Schematizzazione di una turbina eolica (modello meccanico).

Sul rotore agisce una coppia aerodinamica, sul generatore agisce una coppia elettrica e sull’albero di rotazione agisce una eventuale coppia frenante generata dai freni meccanici.

Nelle turbine progettate per funzionare con *velocità di rotazione fissa*, la coppia del generatore varia in funzione della coppia aerodinamica e l’unico metodo per controllare la coppia del generatore è di agire regolando la coppia aerodinamica stessa, poiché le dinamiche di trasmissione e generazione sono vincolate dal progetto dei componenti e quindi non sono controllabili.

Invece, per le turbine a *velocità di rotazione variabile*, la coppia del generatore può essere variata indipendentemente dalla coppia aerodinamica. Dunque la velocità di rotazione del rotore può essere modificata agendo sia sulla coppia aerodinamica sia sulla coppia del generatore con l’evidente accelerazione o decelerazione del rotore stesso. La variazione della coppia del generatore è effettuata mediante l’interposizione di un convertitore elettronico di potenza che regola fase e frequenza della corrente circolante negli avvolgimenti del generatore. La coppia aerodinamica può essere regolata agendo sul *tip speed ratio*, sul coefficiente di potenza, sull’imbardata e sulla geometria della pala. Regolando la coppia aerodinamica agendo sulla geometria del rotore si modificano i valori di portanza e di resistenza con conseguente variazione della coppia motrice aerodinamica. La variazione di geometria del rotore può essere effettuata regolando l’angolo di Pitch lungo tutta l’estensione della pala o cambiando la geometria solo di una porzione di pala, attraverso l’applicazione di flaps, spoliers o di getti d’aria,
capaci di aumentare la resistenza e al contempo ridurre la portanza senza richiedere l’uso di sofisticati meccanismi d’attuazione ma con conseguente aumento della complessità del design del profilo alare.

Il **Pitch control**, più propriamente detto **controllo dell’angolo di Pitch** necessita della rotazione delle pale lungo il proprio asse longitudinale. Queste possono ruotare ognuna individualmente di un proprio angolo rispetto alle altre oppure collettivamente ruotano dello stesso angolo di Pitch.

Il controllo della coppia attraverso la variazione del passo o dell’angolo di calettamento può avvenire sia con un **incremento** che con un **decremento** dell’angolo di attacco α.

L’**incremento** del passo (*passo in avanti*) consiste in una rotazione della pala verso il bordo di attacco in modo da ridurre l’angolo di incidenza e di conseguenza della portanza e della resistenza aerodinamica. Nella **figura 14** si nota l’aumento della velocità del vento ed una forza F_A che si riduce a causa della riduzione di α, mantenendo costante F_t e quindi la coppia. Questo è noto anche come **passo verso la corrente** o meglio, *Pitch to feather*. È una tecnica molto utilizzata poiché consente un buon controllo del flusso aerodinamico dato che i filetti fluidi difficilmente si staccano dalla superficie del profilo alare e rendono alquanto improbabile la formazione dello stallo. Sono richieste ampie variazioni di Pitch con valori che possono arrivare anche a 25°.

Figura 14 Rappresentazione dei triangoli di velocità con regolazione del passo in avanti.

Questa tipologia di regolazione del passo interviene sia all’avviamento, incrementando la coppia aerodinamica alla partenza, sia per limitare la potenza quando la velocità del vento supera il valore nominale, riducendo in maniera sostanziale le spinte sul rotore. Per ottenere una regolazione efficace è opportuno che il controllo del passo risponda in maniera tempestiva al variare delle condizioni del vento.
Il **decremento** del passo (**passo indietro**), al contrario, consiste nella rotazione del bordo d’attacco in direzione opposta alla corrente. Tale rotazione determina l’incremento dell’angolo d’incidenza con conseguente riduzione della coppia, a seguito dell’instaurarsi dello stallo che porta la portanza a calare e la resistenza a crescere. Anche qui la forza tangenziale rimane costante e quindi pure la coppia. Il controllo per passo indietro è anche noto come **passo verso lo stallo o stallo attivo o assistito** ma anche **Pitch to Stall**.

![Figura 15 Rappresentazione dei triangoli di velocità con regolazione del passo indietro.](image)

Questa strategia non è molto utilizzata, in quanto lo stallo determina delle sollecitazioni di spinta maggiori rispetto al passo verso la corrente, a causa dell’accresciuta resistenza. Inoltre lo stallo rende difficile il controllo della potenza ma al tempo stesso questa strategia è in grado di ridurre la potenza estratta con minime variazioni di Pitch di pochi gradi (5-6°).

Lo **stall control o passive stall** consiste nello sfruttare lo stallo del profilo. Questo è reso possibile grazie al particolare disegno del profilo alare, che è opportunamente studiato in modo tale che al superamento di una certa velocità del vento il profilo entri progressivamente in stallo dalla zona di radice della pala verso il mozzo a causa dello svergolamento. L’entrata in stallo della pala comporta la riduzione della potenza generata, senza superare il valore nominale. È’ difficile ottenere un andamento lineare e costante al valore nominale ma tale andamento diminuisce all’aumentare della velocità del vento. Questa strategia di controllo presenta una semplicità costruttiva perché le pale sono fisse; ciò, d’altro canto, comporta un’esposizione della superficie palare maggiore per cui si ha una sollecitazione maggiore della struttura durante le raffiche di vento forte, ed è una strategia spesso utilizzabile per piccole turbine, piccoli impianti, senza problemi particolari di allaccio alla rete.
Lo **yaw control** o sistema di controllo dell’imbardata, consente di orientare in maniera continua la navicella nella direzione di provenienza del vento per assicurare sempre il massimo rendimento, ed anche di "parzializzare" la turbina quando necessario. Esso può essere di tipo attivo o passivo. Per la prima tipologia si fa uso di appositi riduttori in grado di ruotare la navicella della turbina eolica rispetto alla torre di sostegno, in base a segnali automatici ricevuti da sensori che controllano la direzione del vento. Per evitare lo sbandieramento frequente la rotazione viene effettuata solo se la direzione del vento si è modificata di un determinato valore, che può essere 10°. Questa tipologia è usata per aerogeneratori di medie o grandi taglie i cui principali componenti sono:

- la **corona dentata**
- il **cuscinetto**;
- i **freni**;
- i **pignoni**.

Il **cuscinetto** rappresenta la connessione scorrevole tra la torre e la navicella della turbina eolica. Per questo motivo deve essere in grado di sopportare elevati carichi, sia quelli dovuti al peso dell’intera navicella compreso quello del rotore, che è di circa una decina di tonnellate, sia quelli dei momenti flettenti causati dal funzionamento del rotore.

I **pignoni** sono gli attuatori della rotazione della navicella rispetto alla torre e sono rappresentativi dell’accoppiamento pignone - corona dentata. Questi sono azionati da motori in grado di sviluppare notevoli coppie del valore di 200.000 Nm attraverso cambi con rapporti di riduzione dell’intervallo di 2000:1, di conseguenza l’imbardata è molto lenta, ad esempio per compiere un giro completo servono alcuni minuti.

I **freni** sono indispensabili per poter fermare la rotazione della navicella e stabilizzarla in una ben precisa posizione e limitare anche le possibili oscillazioni causate dal transito del vento.
attraverso il rotore. La frenatura può essere attuata con dei freni pneumatici, con l’uso di pastiglie che serrano su di un disco, oppure con freni elettrici con un comando elettromecanico. Quest’ultima soluzione è la più ricercata ed utilizzata in quanto limita i costi legati all’impianto idraulico che è praticamente inesistente in questo caso, eliminando anche i possibili rischi di rottura.

La seconda tipologia invece, riguarda il sistema di imbardata passiva e utilizza la forza del vento per regolare l’orientamento del rotore della turbina eolica lungo la direzione del vento. Questa prevede due possibili soluzioni, una è l’applicazione di una banderuola montata sulla navicella, l’altra è l’utilizzo di turbine sottovento. Nel complesso questa seconda tipologia è la più semplice ma meno efficiente e per questa ragione solitamente viene usata solo per macchine di piccole potenze.

Figura 137 Raffigurazione dei sistemi di controllo Pitch Control e Yaw Control.

Figura 148 Particolare del Pitch Control e dello Yaw Control.
2.5.11 **CONNESSIONE ALLA RETE ELETTRICA.**

Completano la struttura di un impianto eolico le cabine elettriche di trasformazione, che elevano la tensione dell’energia prodotta, e i cavi che convogliano l’energia uscente da queste ultime fino ad una cabina centrale di raccolta, da cui parte la linea di collegamento con la rete elettrica locale.

2.6 **ENERGIA PRODUCIBILE DA UN AEROGENERATORE.**

Le prestazioni di un aerogeneratore vengono sintetizzate mediante una curva che rappresenta l’andamento della potenza resa (in ordinata) in funzione della velocità del vento (in ascissa), denominata “*Curva di potenza*”. Per convenzione viene considerata la potenza elettrica resa ai morsetti del generatore. Una curva relativa ad un aerogeneratore con potenza nominale pari a 3 MW è rappresentata in figura 19:

![Curva di potenza di un aerogeneratore da 3 MW.](image)

Si definisce velocità del vento d’inserimento o di generazione (*cut-in*) la minima velocità per cui l’aerogeneratore inizia a erogare energia elettrica. Nei moderni aerogeneratori tale valore si attesta di solito intorno ai 3-4 m/s. La velocità del vento *nominale* è la minima velocità del vento che permette alla macchina di erogare la sua potenza di targa (*potenza nominale, Rated Power*) pari a 3 MW nell’esempio. Di solito, tale valore della velocità del vento si attesta intorno ai 12-14 m/s. La velocità del vento di fuori servizio (*cut-out*) è la velocità limite oltre la quale la macchina viene posta in pausa, in condizioni di sicurezza aerodinamica. Solitamente
CAPITOLO TERZO

3 AERODINAMICA DELLA TURBINA HAWT.

L’analisi dei fenomeni aerodinamici che si verificano su di una generica macchina eolica ad asse orizzontale è un compito assai complesso. Tale complessità determina la necessità di studiare il comportamento aerodinamico dei profili alari e la modellazione del rotore nel suo insieme.

3.1 GENERALITA’ AERODINAMICHE DEL PROFILO ALARE.

Un profilo alare (airfoil) è un corpo ideale e piano che rappresenta una sezione longitudinale della pala. Si tratta di un profilo affusolato che può essere descritto geometricamente attraverso la sovrapposizione di una distribuzione di spessore su una linea media (mean line), che può essere diritta o convessa, nel qual caso è possibile quantificarne la curvatura (camber). Il punto corrispondente all’estremità anteriore della linea media, ossia quella rivolta verso il flusso, è detto bordo d’attacco (leading edge), quello opposto è detto bordo d’uscita (trailing edge). Il contorno superiore del profilo è detto estradosso (upper contour), quello inferiore intradosso (lower contour). Il segmento che congiunge il bordo d’attacco col bordo d’uscita è detto corda (chord line), così come la sua lunghezza che è indicata con c. L’angolo \(\alpha \) è detto angolo di attacco o incidenza, rappresentato dall’angolo tra la direzione di flusso e la corda. Il profilo è simmetrico se caratterizzato da una linea media rettilinea, antisimmetrico in caso contrario.

Figura 1 Schematizzazione della geometria del profilo alare.
La particolare forma geometrica del profilo alare fa sì che si generino delle reazioni alle forze create dall’interazione tra fluido e corpo sotto forma di azioni e momenti. Le componenti della reazione secondo la direzione normale e tangenziale al vettore velocità del flusso, prendono il nome di **portanza L** e **resistenza D**. A ciò si aggiunge la reazione di una coppia M. Tutte queste forze hanno il loro punto di applicazione nel centro aerodinamico del profilo. La portanza è generata dalla differenza di pressione a cui sono sottoposte le due superfici del profilo. Questo comportamento implica un’accelerazione della velocità sulla superficie in depressione (*intradosso*) ed una decelerazione sulla superficie in pressione (*estradosso*), ed è evidenziato anche dall’equazione di Bernoulli che mette in risalto la relazione tra velocità e pressione del fluido. La forza di resistenza invece è il risultato delle azioni di attrito superficiale, della resistenza di forma e della resistenza indotta, causata dalla turbolenza.

Applicando la similitudine aerodinamica al profilo si ottengono le seguenti relazioni standardizzate:

\[
\text{Portanza} \quad L = \frac{1}{2} \rho A_p C_L w^2 \quad (3.1)
\]

\[
\text{Resistenza} \quad D = \frac{1}{2} \rho A_p C_D w^2 \quad (3.2)
\]

\[
\text{Momento Aerodinamico} \quad M = \frac{1}{2} \rho A_p C_M c w^2 \quad (3.3)
\]

\[
\text{Efficienza} \quad E = \frac{L}{D} = \frac{C_L}{C_D} \quad (3.4)
\]

Il termine \(A_p\) rappresenta la superficie del profilo, ottenuta come prodotto della lunghezza della corda per la larghezza del profilo, mentre i parametri \(C_L\), \(C_D\), \(C_M\) sono rispettivamente i **coefficienti di portanza, resistenza e momento**.

![Figura 2 Forze aerodinamiche sviluppate dal profilo: portanza, resistenza e momento.](image)

Tali coefficienti dipendono dalla forma del profilo, dall’angolo di attacco e da quantità fisiche associate al flusso fluido, primo fra tutti il numero di Reynolds, responsabile delle azioni di attrito nello strato limite del flusso sul profilo alare.
Lo strato limite è la regione di fluido prossima alla superficie del profilo, nella quale sono significativi gli effetti dell’attrito. Difatti in essa la velocità del fluido va da zero, sulla superficie del profilo, ad un valore finito che corrisponde alla velocità di flusso indisturbato. In tale regione il moto può essere laminare o turbolento. Precise condizioni di moto determinano il passaggio da laminare a turbolento, mediante il fenomeno della transizione, generando forze di attrito molto intense, ecco perché si cerca di incorrere in condizioni di moto laminare. Difatti gli attuali profili a bassa resistenza sono in grado di generare uno strato limite laminare per circa il 70% della loro superficie. La stabilità dello strato limite laminare è influenzata dal gradiente di pressione che può essere favorevole o sfavorevole, e dal numero di Reynolds soprattutto se elevato. In condizioni di moto sottoposto ad un gradiente di pressione sfavorevole si può avere l’inversione del moto da parte del flusso prossimo alla superficie del profilo con conseguente separazione della vena fluida dal corpo, formando una scia turbolenta. Un’aumentata separazione causa lo stallo e quindi una notevole riduzione della portanza e un aumento della resistenza. Lo stallo è favorito sull’estrasdosso al crescere dell’angolo di attacco e sull’intradosso al decrescere dell’angolo di attacco. Questo comportamento è visibile dai grafici che riportano il valore dei coefficienti di portanza e di resistenza del profilo alare in funzione dell’angolo di attacco, dove si nota come il coefficiente di portanza presenta un andamento lineare per un certo range di valori dell’angolo. Un volta raggiunto il valore massimo, a ulteriori incrementi dell’angolo di attacco corrispondono decrementi della portanza e il relativo innalzamento del coefficiente di resistenza.
Figura 4 Andamento del coefficiente di portanza del profilo alare in funzione dell’angolo di attacco. Si nota l’andamento lineare seguito da un calo dopo il punto di massimo al quale si verifica lo stallo.

Il numero di Reynolds, riferito alla corda \(c \) della sezione di pala, è dato dall’espressione:

\[
Re = \frac{\rho c w}{\mu}
\]

Dove \(\mu \) è la viscosità dinamica dell’aria e \(\rho \) è la sua massa volumica, che dipende dalle condizioni meteorologiche locali e dalla localizzazione del sito. È facile notare come turbine di grandi dimensioni presentano alti valori del numero di Reynolds, date le notevoli dimensioni della corda della pala, a parità di condizioni di flusso. Per numeri di Reynolds elevati lo strato limite laminare è meno stabile perciò la transizione allo strato limite turbolento può avvenire anticipatamente. Per bassi numeri di Reynolds invece lo strato limite è molto stabile. Il numero di Reynolds incide significativamente sulle dimensioni dello spessore dello strato limite in maniera inversamente proporzionale, e di conseguenza anche sugli effetti della rugosità. Generalmente le rugosità presenti sono sporco, graffiature e ghiaccio, che cambiando la forma delle superfici del profilo alare modificano il comportamento dello strato limite, destabilizzando lo strato limite laminare e indebolendo quello turbolento. Ciò altera la portanza, la resistenza e il momento aerodinamico, che vengono rispettivamente ridotti ed aumentati con penalizzazioni della curva di potenza.

3.2 ANALISI AERODINAMICA DELLA PALA.

Sulla pala agiscono due flussi d’aria dipendenti dal vento. Nel primo caso, il vento entra nel tubo di flusso con velocità \(V \) parallela all’asse della turbina e nel secondo caso si tratta invece
di un flusso d’aria generato dalla rotazione della pala stessa che crea una velocità di trascinamento u perpendicolare alla velocità precedente.

Figura 5 Schematizzazione aerodinamica della pala.

Ad una distanza r dal mozzo, la componente della velocità di trascinamento vale:

$$\vec{u} = -\vec{\Omega}r$$ \hspace{1cm} (3.6)

dove $\vec{\Omega}$ è la velocità angolare di rotazione del rotore, misurata in rad/s. Per un sistema di riferimento solidale con la pala, la velocità complessiva del flusso d’aria che agisce sulla pala è data dalla somma vettoriale delle due componenti, ovvero:

$$\vec{w} = \vec{V} + \vec{u}$$ \hspace{1cm} (3.7)

il cui modulo e gli angoli valgono:

$$|w| = \sqrt{V^2 + u^2} = \sqrt{V^2 + (\Omega r)^2}; \quad \delta = \arctg\left(\frac{V}{u}\right)$$ \hspace{1cm} (3.8)

Questo flusso d’aria risultante che si ottiene nel momento in cui lambisce la pala genera due forze aerodinamiche, definite come visto precedentemente, forza di portanza L e forza di resistenza D. La prima è perpendicolare alla direzione del flusso d’aria risultante mentre la seconda è parallela a tale direzione. In figura 6, rappresentante una sezione alare, è possibile distinguere entrambi i vettori e si denotano i seguenti angoli caratteristici:

- α, angolo di attacco o di incidenza, è lo scostamento angolare tra la direzione del flusso d’aria risultante e la corda del profilo;
\[\beta, \text{ angolo di calettamento o di Pitch, } \] è lo scostamento angolare tra il piano di rotazione della pala e la corda del profilo;

\[\delta = \alpha + \beta, \text{ angolo di costruzione, } \] è la somma dell’angolo di attacco e dell’angolo di Pitch.

![Figura 6 Composizione dei vettori sul profilo aerodinamico.](image)

Le azioni aerodinamiche, portanza e resistenza, scomposte lungo la direzione perpendicolare e parallela all’asse della turbina, danno:

- **S**, *forza motrice o spinta tangenziale*, utile per la generazione di coppia sull’albero principale, data da:

 \[S = L \sin \delta - D \cos \delta \]

 \[(3.9) \]

- **T**, *forza assiale o spinta assiale*, genera solamente sollecitazioni sul sostegno della macchina;

 \[T = L \cos \delta + D \sin \delta \]

 \[(3.10) \]

Questi sono valori locali delle forze, ossia riferite ad un determinato raggio \(r \). Al variare di esso si ha la conseguente variazione della velocità periferica, \(u = \Omega r \), e quindi dell’angolo \(\delta \). Per far sì che l’angolo di incidenza \(\alpha \) mantenga sempre il suo valore di buona efficienza è opportuno variare l’angolo di calettamento \(\beta \). Essendo \(\beta = \delta - \alpha \) e \(\alpha \) costante o poco variabile, poiché \(\delta \) diminuisce al crescere di \(r \), si ottiene una conseguente diminuzione dell’angolo di calettamento \(\beta \). Per questa ragione la pala si presenta *svergolata*, cioè caratterizzata da una rotazione oraria della corda determinata dal calettamento variabile dal mozzo verso l’estremi-
tà. Ciò significa che il calettamento diminuisce man mano che aumenta sul profilo della pala la velocità periferica allontanandosi dal mozzo.

Considerando un elemento di pala di larghezza dr e quindi di superficie $dA_p = c \, dr$, le azioni aerodinamiche elementari esercitate su di esso sono:

$$dS = \frac{1}{2} \rho C_s w^2 c \, dr$$

$$dT = \frac{1}{2} \rho C_T w^2 c \, dr$$

$$dM_r = \frac{1}{2} \rho C_s w^2 c \, rdr$$

dove C_s e C_T rappresentano rispettivamente i coefficienti di spinta tangenziale e di spinta assiale, dati da:

$$C_s = C_L \, sen\delta - C_D \, cos\delta$$

$$C_T = C_L \, cos\delta + C_D \, sen\delta$$

3.3 MODELLI FLUIDODINAMICI.

Per ottenere una caratterizzazione del funzionamento della turbina eolica si fa ricorso a due modelli fluidodinamici di livello di complessità molto diverso. Il primo, estremamente semplificato, è detto modello del disco attuatore dove il rotore è idealizzato come un disco di spessore infinitesimo. Un modello più raffinato, capace di fornire informazioni più dettagliate è quello detto modello dell’elemento di pala, in cui viene considerata la reale geometria delle pale, alle cui sezioni sono attribuite le caratteristiche aerodinamiche di un profilo alare.

3.3.1 TEORIA IMPULSIVA SEMPLICE.

La teoria impulsiva semplice è la teoria unidimensionale di facile comprensione e semplicità. Utilizza l’analogia del disco attuatore per simulare il comportamento del rotore della turbina. La macchina induce variazioni di velocità assiale valutabili applicando il principio della
quantità di \(^4\)moto ad un volume di controllo che ingloba la macchina, unitamente al principio di conservazione della massa. È così possibile discutere gli aspetti di massimizzazione del lavoro e della potenza meccanica estraibile dalla corrente fluida, valutando la condizione del limite di Lanchester-Betz\(^2\). Betz nel 1920 pensò di utilizzare la teoria di Rankine applicandola ad un’elica motrice, con le seguenti ipotesi:

- Fluido incomprimibile, ossia \(\rho\) costante.
- Fluido non viscido.
- Flusso stazionario unidimensionale di intensità costante con la quota.
- Flusso irrotazionale, non sono presenti effetti della rotazione della vena fluida.
- Rotore con numero infinito di pale.
- Concetto di tubo di flusso, \textit{stream tube}.
- Nelle sezioni infinitamente a monte e a valle, si ritiene una situazione fluidodinamica indisturbata, dove vale la pressione atmosferica ambientale.

Il disco attuatore è considerato una superficie uniforme, porosa (ostacolo permeabile), di spessore nullo e avente un numero infinito di pale di corda infinitesima. Sulla base del concetto di stream tube la massa d’aria che investe appunto, il disco, rimane separata da quella circostante. Inoltre essa fluisce solamente in direzione longitudinale. Attraverso il disco attuatore avvengono trasformazioni energetiche e dinamiche, difatti il disco sottrae energia cinetica al vento rallentando la massa d’aria che lo investe. Questa diminuzione di velocità della vena fluida comporta, considerando costante densità e portata dell’aria, un aumento della sezione del tubo di flusso stesso e una divergenza delle linee di corrente. Inoltre, partendo dalla pressione atmosferica in ingresso al tubo, la diminuzione graduale di velocità lungo il tubo di flusso determina un aumento di pressione la quale cala bruscamente sul disco per poi ritornare gradualmente alla pressione atmosferica in uscita dal tubo di flusso.

\(^4\) Betz è stato un fisico e ingegnere tedesco ed un pioniere della tecnologia delle turbine eoliche. Il suo lavoro si basava sugli studi precedenti di Frederick Lanchester. Ha dedotto la legge di Betz, la quale mostra la massima energia possibile che si potrebbe ricavare tramite un rotore infinitamente sottile da un fluido che scorre ad una certa velocità.

48
Figura 7 Schematizzazione dello stream tube e della sua relativa espansione.

Figura 8 Andamento della velocità e della pressione lungo lo stream tube.

Questo si spiega anche attraverso il Teorema di Bernoulli per cui la somma dell’energia cinetica e dell’energia di pressione della vena fluida che si avvicina al tubo di flusso resta costante:

\[\frac{p}{\gamma} + \frac{v^2}{2g} = \text{cost.} \]

(3.14)

L’ipotesi fatta di tubo di flusso e densità costante comporta la validità dell’equazione di continuità. Perciò si può scrivere:

\[\dot{m} = \rho A_w V_w = \rho A_d V_d = \rho A_w V_w = \rho AV \]

(3.15)

La variazione della quantità di moto tra ingresso ed uscita, per il Teorema dell’impulso è pari alla spinta assiale:

\[T = \dot{m}(V_e - V_w) = \rho AV(V_e - V_w) \]

(3.16)

La variazione di flusso di energia cinetica è data da:
La potenza estratta al vento dal disco può essere calcolata come lavoro compiuto dalla spinta assiale T sul fluido che si muove a velocità V, oppure come lavoro della coppia M_r per la rotazione Ω.

\[P_r = TV = \rho AV^2(V_\infty - V_w) \equiv M_r \Omega \]

Uguagliando il lavoro compiuto nell’unità di tempo dalla spinta T alla variazione di energia cinetica ΔE_C subita dalla massa d’aria che attraversa il rotore, si ottiene:

\[\rho AV^2(V_\infty - V_w) = \frac{1}{2} \rho AV(V_\infty^2 - V_w^2) \]

da cui semplificando e scomponendo il secondo membro come una differenza di quadrati si ottiene:

\[V = \frac{1}{2} (V_\infty + V_w) \]

Si può notare come il rallentamento del vento avviene per metà nel tratto a monte e per metà nel tratto a valle del disco attuatore. Questo risultato è detto condizione di Freude. Introducendo e definendo la quantità a fattore di induzione assiale o d’interferenza, come:

\[a = \frac{1}{2} \left(1 - \frac{V_w}{V_\infty} \right) \]

mediante il quale è possibile descrivere la velocità in corrispondenza del disco in funzione della velocità in ingresso, si ottiene dalla (3.20):

\[a = 1 - \left(\frac{V_d}{V_\infty} \right) \]

\[V_d = V_\infty (1 - a) \]

\[V_w = V_\infty (1 - 2a) \]

mentre le (3.7), (3.8), (3.9) e (3.10) diventano:

\[\dot{m} = \rho A_d V_c (1 - a) \]

\[T = 2 \rho A_d V_w^2 a (1 - a) \]

\[P_r = \Delta E_C = 2 \rho A_d V_w^2 a (1 - a) \]
per convenzione ci si riferisce ad A_d poiché non è possibile conoscere A_∞. Inoltre è possibile osservare che la potenza dipende:

- in modo proporzionale dalla densità ρ della massa d’aria incidente, per cui si ha una riduzione di potenza estratta in climi caldi o in montagna;

- in modo proporzionale dall’area A_d del rotore, per cui aumentando la lunghezza delle pale aumenta l’area del disco da esse “disegnato” in rotazione;

- dal cubo della velocità in ingresso del vento, il che giustifica l’interesse all’installazione delle turbine eoliche in siti molto ventosi;

- dalla velocità del vento in uscita V_w attraverso il fattore d’ interferenza a.

In particolare, esiste un valore ottimale della velocità d’ uscita V_w, in corrispondenza del quale si ha la massima potenza estratta. Tale valore si ottiene differenziando P_r rispetto ad a ed eguagliando a zero la derivata ottenuta. Si ha quindi:

$$\frac{dP_r}{da} = 3a^2 - 4a + 1 = 0$$ (3.24)

Risolvendo tale equazione di II grado, si ottengono due valori di a:

- l, che non è accettabile perché dalla (3.22) si avrebbe una velocità del vento in uscita negativa e dalla (3.23) un potenza nulla;

- $1/3$, a cui corrisponde una velocità d’uscita pari ad un terzo di quella in ingresso.

Per quest’ultimo valore, $a_{opt}=1/3$, corrisponde una potenza estratta dal vento pari a:

$$P_{r,\text{max}} = \frac{8}{27} \rho A_d V_\infty^3$$ (3.25)

Si definisce il seguente parametro adimensionale, *coefficiente di potenza* C_p, come il rapporto tra la potenza estratta e la potenza disponibile del vento:

$$C_p = \frac{P_r}{P_{disp}} = \frac{2\rho A_d V_\infty^2 a (1-a)^2}{2\rho A_d V_\infty^3} = 4a(1-a)^2$$ (3.26)

L’espressione (3.18) rappresenta la nota *formula di Betz*. Il coefficiente di potenza C_p rappresenta l’efficienza della turbina, ossia quanta potenza si riesce a produrre rispetto a quella “teo-
rica” posseduta dalla corrente che investe il rotore. Il coefficiente C_P dipende solo dalla forma della turbina e non dalla sua scala. Pertanto, il coefficiente di potenza può essere misurato tramite la (3.18) su macchina reale, oppure, a parità di numero di Reynolds il C_P può essere determinato eseguendo prove in galleria del vento su modelli di turbina in scala ridotta, ossia su turbine geometricamente simili. Assegnando ad a il valore di ottimo, ossia $1/3$, si ricava il coefficiente di potenza massima pari a:

$$C_{P,\text{max}} = \frac{16}{27} = 0,593$$ (3.27)

Solitamente chiamato **Limite di Betz**, che nelle ipotesi semplificative esposte rappresenta la massima frazione di potenza meccanica ottenibile da una corrente fluida libera intercettata da un rotore. Dalla **figura 9** si nota che il coefficiente di potenza C_P cresce dapprima al crescere del fattore d’interferenza a, raggiunge poi il massimo in corrispondenza di $a=1/3$ e poi decresce fino ad $a=1/2$ in cui la velocità d’uscita si annulla. La velocità in uscita dal tubo di flusso non deve essere nulla altrimenti non vi è trasporto di materia per effetto muro. La parte per $a>1/2$ non ha senso fisico, poiché significherebbe aria con velocità negativa nella sezione d’uscita.

Figura 9 Curva del coefficiente di potenza in funzione di a

Oltre al coefficiente C_p, si definisce anche il **coefficiente di spinta** C_s come il rapporto tra la forza esercitata sul disco attuatore e la forza disponibile nel vento:

$$C_s = \frac{T}{T_{\text{disp}}} = \frac{P_r/V_{\text{disp}}}{P_{\text{disp}}/V_\infty} = \frac{2\rho A_d a(1-a)V_\infty^2}{\frac{\rho A_d V_\infty^2}{2}} = 4a(1 - a)$$ (3.28)

Il massimo valore del coefficiente di spinta si ottiene eguagliando a zero la derivata rispetto ad a, ossia:
\[
\frac{dc_s}{da} = 4(1 - 2a) = 0 \Rightarrow a = \frac{1}{2}
\]

(3.29)

Quindi, come si può notare anche dal grafico di figura 10, la spinta massima sul disco attuatore si avrebbe qualora si annullasse la velocità d’uscita.

![Grafico 10](image)

Figura 10 Coefficiente di spinta in funzione di \(a\).

Il parametro fondamentale caratterizzante il funzionamento della turbina è definito TSR (Tip Speed Ratio), identificato con \(\lambda\), che è il rapporto tra la velocità tangenziale all’estremità delle pale e la velocità del vento in ingresso al tubo di flusso:

\[
\lambda = \frac{u}{v} = \frac{\Omega R}{v}
\]

(3.30)

La caratteristica di funzionamento di una turbina eolica è rappresentata dalla curva \(\lambda - C_p\). Per una data pala attraverso il legame \(\lambda - C_p\) è possibile fare alcune considerazioni:

- la forma della curva dipende dal tipo di turbina;
- esiste un unico valore di \(\lambda\) per il quale si ha il massimo coefficiente di potenza;
- al variare della velocità del vento occorre variare la velocità di rotazione delle pale per mantenere il valore di \(\lambda\) costante e pari al suo valore ottimale per il quale si ottiene \(C_{p_{\text{max}}}\);
- il \(\lambda\) ottimale dipende dal numero di pale, difatti si distinguono turbine lente, ossia quelle per cui il valore di \(\lambda_{\text{opt}}\) è basso e turbine veloci, ossia quelle con valore di \(\lambda_{\text{opt}}\) elevato.

Al fine di massimizzare l’energia annua prodotta il coefficiente di potenza \(C_p\) dovrebbe essere mantenuto al suo valore massimo durante il funzionamento dell’aerogeneratore per più tempo.
possibile, anche al variare della velocità del vento. Pertanto la velocità di rotazione del rotore dovrebbe variare per mantenere il TSR al valore che massimizza il C_p. In figura 11 sono messe a confronto, in funzione della velocità del vento, la curva della potenza disponibile della vena fluida, la curva ideale del limite teorico di Betz della potenza massima estraibile e le curve reali della potenza generata in una turbina a controllo passivo dello stallo ed a regolazione dell’angolo di Pitch. Come si può notare, mediante il controllo di tale angolo, una volta raggiunta la potenza nominale del generatore elettrico, è possibile mantenerla molto prossima a tale valore fino alla velocità di cut-off.

![Figura 11 Confronto curve di potenza.](image)

3.3.2 TEORIA IMPULSIVA VORTICOSA.

Restando sempre nell’ipotesi di flusso non-viscoso e analizzando in maniera più realistica il flusso che si realizza intorno ad una turbina, si giunge a considerazioni più pessimistiche rispetto alla teoria impulsiva assiale. Nell’aria si genera una componente elicoidale di moto, di verso opposto alla rotazione dell’elica, dovuta alla variazione di quantità di moto tangenziale. L’assenza di viscosità nel tubo di flusso di scia impedisce lo smorzamento del moto che quindi si conserva nel tubo stesso.

![Figura 12 Moto vorticoso di una particella d’aria che yitransita attraverso il rotore.](image)
Nasce così una componente tangenziale di velocità inesistente nel flusso in arrivo a cui corrisponde una perdita di energia cinetica e quindi una riduzione dell’efficienza reale e del C_p. Tale effetto sarà più intenso quanto maggiore è la coppia prodotta dalla turbina, poiché proprio tale coppia genera la variazione di quantità di moto tangenziale. Per cui le turbine ad elevata coppia ed elevata solidità (turbine lente) hanno un C_p più basso di quelle a piccola coppia e bassa solidità (turbine veloci). Come si può notare da figura 13, la teoria impulsiva vorticosa prende in considerazione l’azione sul singolo profilo aerodinamico, alla distanza radiale r, investito dal flusso combinato dalla velocità del vento e dal moto di rotazione della pala. Da qui è possibile ipotizzare che non esistono moti radiali e che il profilo aerodinamico non è influenzato da quelli adiacenti. A tal proposito consideriamo un tubo di flusso diviso in elementi anulari concentrici di spessore elementare dr, attraversati da un flusso elicoidale non viscoso e indicheremo con Ω la velocità angolare del rotore, come illustrato in figura 13. Le linee di corrente che attraversano il piano dell’elica acquistano una componente tangenziale con velocità angolare ω. I filetti fluidi quindi non si muoveranno più con moto rettilineo come invece è stato ipotizzato nella teoria impulsiva assiale. Questo è anche uno dei motivi per cui la scia vorticosa che si viene a formare in questo caso a valle del rotore, risulta essere una delle cause di perdita che incide sulla diminuzione di efficienza e C_p. La velocità angolare ω è una velocità indotta provocata dal profilo stesso e risulta essere nulla sul bordo di attacco ed ha un valore ω sul bordo di uscita. Per tale motivo si avranno due diverse velocità tangenziali, relative ai triangoli di velocità all’attacco e all’uscita. Al bordo di attacco la velocità tangenziale sarà Ωr e al bordo di uscita sarà $(\Omega+\omega)r$, noi considereremo il valore medio $(\Omega+\frac{1}{2}\omega)r$.

Figura 13 Tubo di flusso suddiviso in elementi anulari concentrici.
Introducendo il fattore di induzione tangenziale o circonferenziale:

\[a' = \frac{1}{2} \frac{\omega}{\Omega} \]

(3.31)
e indicando con i pedici 1 e 2 le grandezze rispettivamente all’ingresso e all’uscita della pala (Figura 13) otterremo:

\[u_1 = \Omega r; \quad u_2 = (\Omega + \omega)r = (1 + 2a')\Omega r \]

(3.32)

Scrivendo l’equazione di conservazione dell’energia (Teorema di Bernoulli) per un filetto fluido ideale, in un sistema di riferimento solidale alle pale, tra ingresso e uscita al raggio r otteniamo:

\[p_1 + \frac{1}{2} \rho u_1^2 = p_2 + \frac{1}{2} \rho u_2^2 \Rightarrow p_1 - p_2 = \frac{\rho}{2}(u_2^2 - u_1^2) \]

(3.33)
e sostituendo le (3.31) otteniamo:

\[p_1 - p_2 = 2\rho a'(1 + a')\Omega^2 r^2 \]

(3.34)

La superficie anulare dell’elemento considerato è \(dA = 2\pi r \, dr \) e la spinta elementare assiale \(dT \) sarà:

\[dT = (p_1 - p_2)2\pi r \, dr = 4\pi \rho a'(1 + a')\Omega^2 r^3 \, dr \]

(3.35)

Uguagliando quest’ultima a quella calcolata per lo stesso elemento di sezione anulare mediante la teoria impulsiva assiale dove \(dA \) in questo caso è lo stesso (seconda delle 3.23), e cioè a:

\[dT = 4\pi \rho a(1 - a)V_\infty^2 r \, dr \]

(3.36)
si ottiene:

\[\frac{a(1-a)}{a'(1+a')} = \left(\frac{\Omega r}{V_\infty} \right)^2 = \lambda_r^2 \]

(3.37)
dove:

\[\lambda_r = \frac{\Omega}{V_\infty} r = \frac{\lambda_r^2}{r} \]

(3.38)

indica il valore locale di velocità periferica e per una data velocità del vento indisturbato \(V_\infty \) varia da un valore minimo ad un valore massimo a seconda del raggio della pala.
Scrivendo l’equazione di conservazione della quantità di moto tangenziale si ricava la coppia M_r, secondo cui la spinta tangenziale S è data dalla portata per la variazione di velocità tangenziale:

$$dS = d\dot{m}[(\Omega + \omega)r - \Omega r] = 2\pi\rho r \, dr \, V_\infty \, r = 4\pi\rho \, V_\infty \, a'(1 - a)\Omega r^2 \, dr$$

(3.39)

$$dM_r = r \, dS = 4\pi\rho \, V_\infty \, a'(1 - a)\Omega r^3 \, dr$$

(3.40)

La potenza generata in ogni elemento può essere determinata adoperando la (3.37) e la definizione della (3.30), sostituendo la variabile r con λ_r e πR^2 con l’area del disco battuto A:

$$dM_r = 4\pi\rho R^2 \frac{V_\infty^2}{\Omega \lambda^2} a'(1 - a)\lambda_r^2 \, d\lambda_r = 4\rho A_d \frac{V_\infty^2}{\lambda^2} a'(1 - a)\lambda_r^2 \, d\lambda_r$$

(3.41)

$$dP_r = \Omega \, dM_r = 4\rho A_d \frac{V_\infty^2}{\lambda^2} a'(1 - a)\lambda_r^2 \, d\lambda_r$$

(3.42)

Infine, integrando $\lambda_r = 0 \ (r = 0)$ e $\lambda_r = \lambda \ (r = R)$, si ottiene:

$$P_r = 4\rho A_d \frac{V_\infty^2}{\lambda^2} \int_0^\lambda a'(1 - a)\lambda_r^2 \, d\lambda_r$$

(3.43)

e quindi il coefficiente di potenza:

$$C_p = \frac{P_r}{\frac{8}{\pi \rho A_d V_\infty^2} \int_0^\lambda a'(1 - a)\lambda_r^3 \, d\lambda_r}$$

(3.44)

Quest’ultima sostituisce il C_p ottenuto con la teoria impulsiva assiale, e dato che non è risolvibile in forma chiusa, non si può ottenere un’espressione analoga alla (3.26) con la teoria impulsiva vorticosa.

E’ possibile però ricavare le condizioni di massima potenza massimizzando il termine $a'(1 - a)$ nella (3.44). Partendo dalla (3.37) è possibile ricavare a' in funzione di a e di λ_r, si ottiene così un’equazione di secondo grado in a':

$$\frac{a(1-a)}{a'(1+a')} = \left(\frac{\Omega r}{V_\infty}\right)^2 = \frac{\lambda^2}{\lambda_r^2} \Rightarrow a'^2 + a' - \frac{a(1-a)}{\lambda_r^2} = 0$$

(3.45)

scartando la soluzione $a' < 0$ dall’equazione di secondo grado, si ottiene:

$$a' = \frac{1}{2} \left\{1 + \left[\frac{4a(1-a)}{\lambda_r^2}\right]^{\frac{1}{2}} - 1\right\}$$

(3.46)
Si può vedere dalla seguente figura 11 come l’andamento di a' diminuisce rapidamente al crescere di λ_r, ovvero la rotazionalità del flusso si riduce rapidamente al crescere del raggio ed è tanto minore quanto più elevato è il valore λ della turbina.

È possibile ottenere il valore ottimale di λ_r moltiplicando a' per $(1-a)$, derivando tutto rispetto ad a ed uguagliando a zero:

$$\lambda_{r,\text{opt}} = \left[\frac{(1-a)(4a-1)^2}{1-3a}\right]^{1/2} \tag{3.47}$$

Sostituendo quest’ultima nella (3.37):

$$\frac{a(1-a)}{a'(1+a')} = \lambda_{r,\text{opt}}^2 \Rightarrow \frac{a(1-a)}{a'(1+a')} = \frac{(1-a)(4a-1)^2}{1-3a} \Rightarrow \frac{a}{a'(1+a')} = \frac{(4a-1)^2}{1-3a}$$

otteniamo un’equazione di secondo grado in a':

$$a'^2 + a' - \frac{a(1-3a)}{(4a-1)^2} = 0$$

scartando la soluzione $a' > 0$ e facendo opportune operazioni e semplificazioni si ottiene il valore ottimale di a':

$$a'_{\text{opt}} = \frac{1-3a}{4a-1} \tag{3.48}$$

la (3.47) e la (3.48) sono quindi i due valori di ottimo, ovvero le condizioni di massima potenza secondo la teoria impulsiva vorticosa.
Dalla figura 15 si può vedere come questa teoria ammette ottimizzazione, in particolare nell’intervallo del fattore di induzione assiale $1/4 \leq a \leq 1/3$ dove λ_r varia fra 0 e ∞.

![Figura 15](image)

Figura 15 Andamento di a' e λ_r ottimali in funzione di a.

Come si può notare a' diminuisce al crescere del raggio e quindi di λ_r, annullandosi per $\lambda_r = \infty$, mentre tende all’infinito sull’asse di rotazione ($\lambda_r = r = 0$).

Ciò vuol dire che la rotazionalità del flusso aumenta notevolmente al diminuire del raggio, mentre si attenua alla punta della pala dove diminuisce la perdita di energia cinetica ed aumenta il rendimento. Questo risultato spinge a costruire turbine le cui pale non partono da valori troppo piccoli del raggio, eliminando la parte interna che contribuisce ben poco alla produzione di potenza totale ed inoltre le pale devono poter essere facilmente fabbricabili ed avere delle prestazioni globali in un ampio campo di velocità del vento e del rotore. Si ritrova infine la condizione del flusso irrotazionale, infatti per $a = 1/3$, a' diventa nullo.

3.3.3 TEORIA DELL’ ELEMENTO DI PALA SENZA SCIA ROTAZIONALE.

Si tratta di una teoria bidimensionale meno approssimata rispetto a quella del disco attuatore ed è basata sull’ipotesi che le pale possano essere suddivise in piccoli elementi che agiscono indipendentemente dagli elementi contigui (figura 16), per cui operano aerodinamicamente come profili alari bidimensionali le cui forze aerodinamiche sono calcolate in base alle condizioni di flusso locale caratterizzate dalla velocità risultante del vento V, la velocità del flusso
d’aria e la velocità del vento dovuta alla rotazione della pala. Queste forze elementari sono integrate radialmente lungo la pala per calcolare le forze ed i momenti totali agenti su di essa.

Figura 16 Schema degli elementi di pala di una turbina eolica.

Le ipotesi su cui si basa tale teoria sono:

- Gli elementi di pala non si influenzano tra di loro;
- Non esistono flussi radiali;
- È nullo l’angolo di imbardata fra la direzione del vento e l’asse della turbina;
- Le forze sulle pale sono determinate unicamente dalle caratteristiche di portanza e resistenza relative al tipo di profilo delle pale in rotazione.

Per l’analisi di questa teoria verranno considerate le ipotesi di flusso irrotazionale riferite alla teoria impulsiva.

Analizzando il triangolo di velocità rappresentato in **figura 17** si possono ricavare le seguenti relazioni geometriche:

Figura 17 Forze e velocità agenti sull’elemento di pala.
Dalle equazioni dei coefficienti di spinta tangenziale e assiale e dalle azioni aerodinamiche elementari esercitate su un elemento di pala dr, precedentemente ricavate:

\[
C_S = C_L \sin \delta - C_D \cos \delta \\
C_T = C_L \cos \delta + C_D \sin \delta
\]

\[
dM_r = \frac{1}{2} \rho C_S w^2 c r dr \\
dT = \frac{1}{2} \rho C_T w^2 c dr \\
dS = \frac{1}{2} \rho C_S w^2 c dr
\]

si ottengono le equazioni della spinta elementare dT e della coppia elementare dM_r della turbina:

\[
dT = \frac{1}{2} \rho B c w^2 C_T dr = \frac{1}{2} \rho B c w^2 (C_L \cos \delta + C_D \sin \delta) dr \\
dM_r = \frac{1}{2} \rho B c w^2 C_S r dr = \frac{1}{2} \rho B c w^2 (C_L \sin \delta - C_D \cos \delta) r dr
\]

dove B è il numero di pale.

Introducendo la solidità della turbina indicata come:

\[
\sigma = \frac{\text{superficie totale delle pale}}{\text{area del disco battuto alla distanza considerata}} = \frac{B c}{2 \pi r}
\]

e utilizzando la (3.49), la (3.51) diventa:

\[
dT = \frac{1}{2} \rho B \sigma^2 \pi r (1 - a)^2 \frac{V^2}{\sin \delta} C_L \cos \delta \left(1 + \frac{C_D \sin \delta}{C_L \cos \delta}\right) dr
\]

Semplificando e riordinando si ricava l’equazione della spinta elementare calcolata con l’utilizzo della teoria dell’elemento di pala:
Le equazioni di continuità e della quantità di moto sul tubo di corrente intercettato dal generico settore di pala, continuano a valere, e il contributo elementare delle azioni aerodinamiche, calcolato secondo la teoria della quantità di moto, verrà ricavato in seguito.

3.3.4 TEORIA DELL’ELEMENTO DI PALA CON SCIA ROTAZIONALE.

Questa teoria si basa sulle stesse ipotesi di quelle descritte per la teoria dell’elemento di pala senza scia rotazionale con la differenza che in questo caso si tiene conto anche della scia rotazionale. Come spiegato nel paragrafo della teoria impulsiva vorticosa la velocità del vento dovuta alla rotazione della pala è pari alla somma vettoriale della velocità periferica sulla sezione della pala e la velocità indotta sulle pale, \((\Omega + \frac{1}{2}\omega)r\), che può essere espressa mediante la definizione del fattore di induzione circonferenziale come:

\[
\left(\Omega + \frac{\alpha}{2}\right)r = \Omega r + \Omega ra' = \Omega r(1 + a')
\]

Con riferimento alla figura 18 dove sono rappresentati i triangoli di velocità si ricavano le seguenti relazioni trigonometriche:

\[
w = \frac{V}{\sin\delta} = \frac{(1-a)V_{\infty}}{\sin\delta} = \frac{u}{\cos\delta} = \frac{(1+a')\Omega r}{\cos\delta}
\]

\[
tan\delta = \frac{(1-a)V_{\infty}}{(1-a)V_{\infty}} = \frac{(1-a)}{(1+a')\lambda_r}
\]

Figura 18 Triangolo di velocità di un generico elemento di pala della turbina eolica.
Dalle (3.56) si può determinare l’angolo formato dalla direzione della velocità relativa rispetto al piano del rotore che sarà pari a:

\[\delta = \tan^{-1} \left(\frac{(1-a)\omega}{(1+a')\Omega r} \right) = \tan^{-1} \left(\frac{(1-a)\omega}{(1+a')\lambda r} \right) \]

(3.58)

Conoscendo già le espressioni della spinta e della coppia:

\[dT = \frac{1}{2} \rho Bcw^2 (C_L \cos \delta + C_D \sin \delta) \, dr \]

(3.59)

\[dM_r = \frac{1}{2} \rho Bcw^2 (C_L \sin \delta - C_D \cos \delta) \, dr \]

(3.60)

Riscrivendo la (3.59) e la (3.60) con le relazioni prima ricavare, (3.56) e (3.57), e con la definizione di solidità (3.53), si ottiene:

\[dT = \frac{1}{2} \rho B 2\pi r \sigma \frac{\omega^2}{B} (C_L \cos \delta + C_D \sin \delta) \, dr = \rho w^2 \pi r \sigma C_L \cos \delta \left(1 + \frac{C_D}{C_L} \tan \delta \right) \, dr \]

(3.61)

\[dM_r = \frac{1}{2} \rho B 2\pi r \sigma \frac{\omega}{B} (C_L \sin \delta - C_D \cos \delta) \, r \, dr = \rho w^2 \pi r \sigma C_L \sin \delta \left(1 - \frac{C_D}{C_L} \tan \delta \right) r^2 \, dr \]

avendo espresso la corda in funzione della solidità tramite la (3.53).

Sostituendo ora, nei due precedenti passaggi, le rispettive relazioni della velocità relativa \(w \), fornita dalla (3.56):

\[dT = \rho V_\alpha^2 \pi (1 - a)^2 \sigma C_L \cos \delta \left(1 + \frac{C_D}{C_L} \tan \delta \right) \, r \, dr \]

(3.61)

\[dM_r = \rho (\Omega r)^2 \pi (1 + a')^2 \sigma C_L \sin \delta \left(1 - \frac{C_D}{C_L} \tan \delta \right) r^2 \, dr \]

(3.62)

otteniamo le due relazioni relative alla teoria dell’elemento di pala, della spinta e della coppia elementare, scritte in riferimento alle relazioni ottenute dal triangolo delle velocità della generica sezione palare, facendo comparire le componenti \(a \) e \(a' \).

Chiaramente anche in questo caso valgono le equazioni della spinta e del momento angolare, calcolate, per una generica sezione anulare, nella teoria impulsiva vorticosa. È ora possibile ricavare il contributo dell’elemento di pala alla potenza e da questa ricavare il coefficiente elementare di potenza \(dC_P \) (è lo stesso che si otterrebbe anche senza considerare la scia rota-
zione, quindi tale espressione è valida anche nel caso precedente, cioè teoria dell’elemento di pala senza scia rotazionale). Sostituendo nella (3.60), l’espressione della corda in funzione della solidità, tramite la (3.53), e la relazione (5.56), dove \(u = \Omega r \), si ottiene:

\[
dM_r = \frac{1}{2} \rho B \frac{2\pi r \sigma}{\cos^2 \delta} \left(C_L \sin \delta - C_D \cos \delta \right) r \, dr
\]

La potenza elementare vale:

\[
dP = \Omega dM_r
\]

e quindi adimensionalizzando quest’ultima si ottiene il contributo elementare di potenza:

\[
dC_p = \frac{dP}{\frac{1}{2} \rho \pi R^2 V_\infty^3} = \frac{1}{2} \rho B \frac{2\pi r \sigma}{\cos^2 \delta} \left(C_L \sin \delta - C_D \cos \delta \right) r \, dr \frac{1}{2} \rho \pi R^2 V_\infty^3
\]

Ricordando che:

\[
\lambda = \frac{\Omega R}{V_\infty}
\]

si ricava:

\[
\Omega = \frac{\lambda V_\infty}{R} \Rightarrow \Omega^3 = \frac{\lambda^3 V_\infty^3}{R^3}
\]

sostituendo quest’ultima espressione con quella del contributo elementare di potenza \(dC_p \), con opportune semplificazioni si ottiene:

\[
dC_p = \frac{2r \sigma \lambda^3}{R^5 \cos^2 \delta} \left(C_L \sin \delta - C_D \cos \delta \right) r^3 \, dr = \frac{2r \sigma \lambda^3}{R^5} C_L \frac{\sin \delta}{\cos^2 \delta} \left(1 - \frac{C_D}{C_L \tan \delta} \right) r^3 \, dr \quad (3.63)
\]
3.3.5 **MODELLO BEMT.**

Il *Blade Element Momentum Theory* o brevemente *BEMT* è un modello ibrido tra la teoria della quantità di moto, descritta con la teoria impulsiva, e la teoria dell’elemento di pala. Come si è potuto notare la teoria impulsiva da sola non è in grado di correlare l’energia utile estratta dal vento con le pale della turbina che la estraggono e quindi risulta impossibile caratterizzare la macchina in funzione dei suoi parametri caratteristici. Il *BEMT* quindi si pone come modello essenziale per chiarire i principali fattori che influenzano le prestazioni e il progetto di una turbina eolica. Con l’ausilio della teoria dell’elemento di pala ed utilizzando l’equazione del bilancio della quantità di moto sugli anelli consecutivi del disco della turbina intercettati dalla successione dei settori di pala in rotazione, esso permette di calcolare la distribuzione dei fattori d’induzione, a e a', lungo la pala essendo noti i coefficienti aerodinamici (CL e CD) per il tipo di profilo in esame. Questo metodo chiaramente si basa su una teoria bidimensionale, e ciò implica che i gradienti delle componenti aerodinamiche nella direzione radiale della pala siano piccoli. Generalmente le pale non sono ottimali per il semplice motivo che deve essere facilitata la loro fabbricazione ma devono avere buone prestazioni per affrontare l’ampia gamma di velocità del vento e di velocità del rotore che incontrano durante la loro applicazione. Per questo motivo solitamente si utilizza un approccio iterativo, cioè si può assumere la forma della pala e prevedere le sue prestazioni; in seguito si prova con un’altra forma e si ripete la previsione fin quando viene trovata una pala adeguata.

3.3.5.1 **MODELLO BEMT SENZA SCIA ROTAZIONALE.**

Quindi, come accennato sopra, provvediamo ora a mettere insieme le equazioni relative alla *teoria della quantità di moto* e alla *teoria dell’elemento di pala*, considerando il caso ideale in cui non è presente alcuna scia vorticosa a valle della turbina, ipotesi trattata dai rispettivi due modelli, *teoria impulsiva semplice* e *teoria dell’elemento di pala senza scia vorticosa*. Facendo riferimento alle equazioni relative alla *teoria della quantità di moto unidimensionale*, possiamo scrivere l’*equazione della spinta elementare* su un anello del disco della turbina.

Dalle due equazioni (3.15) e (3.16), in termini infinitesimi si può scrivere:

$$dm = \rho V dA \quad (3.64)$$
dove l’area elementare vale $dA=2\pi r \, dr$, per cui:

$$dT = (V_\infty - V_w) dm = 2\pi \rho V (V_\infty - V_w) r \, dr$$ \hspace{1cm} (3.65)$$

Dalla seconda e dalla terza delle (3.22) si ricava:

$$V = V_\infty (1 - a); \quad 2a = \left(1 - \frac{V_w}{V_\infty}\right)$$

quindi, sostituendole nella (3.65) e semplificando si ottiene:

$$dT = 2\pi \rho V_\infty (1 - a) V_\infty \left(1 - \frac{V_w}{V_\infty}\right) r \, dr$$

infine:

$$dT = 4\pi \rho a (1 - a) V_\infty^2 r \, dr$$ \hspace{1cm} (3.66)$$

Per quanto riguarda la *teoria dell’elemento di pala senza scia rotazionale* avevamo già ottenuto l’equazione della spinta elementare, ossia:

$$dT = \rho V_\infty^2 \pi (1 - a)^2 \sigma C_L \frac{\cos \delta}{\sin^2 \delta} \left(1 + \frac{C_D}{C_L} \tan \delta\right) dr$$ \hspace{1cm} (3.67)$$

Le equazioni che sono state appena scritte, sono le equazioni fondamentali per l’analisi di una turbina eolica attraverso la teoria dell’elemento di pala e la teoria della quantità di moto. Quindi per lo studio di una turbina eolica dovranno essere note la distribuzione radiale dell’angolo di calettamento β e i valori della velocità del flusso indisturbato V_∞ e la velocità di rotazione Ω. Per ogni elemento di pala si deve calcolare l’angolo δ dalla seconda delle (3.8), poi si calcola $a = \phi - \beta$ ed infine si leggono i valori di C_L e C_D dalle tabelle che riportano tali coefficienti in funzione di a e Re, il tutto a partire da un valore iniziale di a.

In seguito, mediante un procedimento iterativo, come quello che usa il programma WindTurbo, si verifica che a sia convergente (dall’Eq. (3.68)), altrimenti in caso contrario si continua ad iterare finché ciò avvenga.

L’equazione che il metodo iterativo risolve non è altro quella che si ottiene andando ad eguagliare la (3.66) alla (3.67), ottenendo un equazione non lineare in a:

$$dT = 4\pi \rho a (1 - a) V_\infty^2 r \, dr = \rho V_\infty^2 \pi (1 - a)^2 \sigma C_L \frac{\cos \delta}{\sin^2 \delta} \left(1 + \frac{C_D}{C_L} \tan \delta\right) dr$$

Che con semplici operazioni algebriche restituisce:
3.3.5.2 **MODELLO BEMT CON SCIA ROTAZIONALE.**

Consideriamo ora il caso più realistico, ossia il caso in cui viene impartita al flusso in uscita una rotazione provocata dalla rotazione stessa del rotore, che genera un momento angolare connesso alla coppia del rotore. Per determinare le forze aerodinamiche sul profilo, in questo caso, occorre conoscere le condizioni locali del moto, ossia a e a'. La teoria dell’elemento di pala suppone che tali grandezze vengano determinate sul disco dalla teoria impulsiva e da quella vorticosa. L’analisi della pala inizia con la scrittura delle quattro equazioni, della spinta e della coppia elementare, ricavate dalla teoria del bilancio della quantità di moto e dalla teoria dell’elemento di pala. Si assume che siano note le distribuzioni della corda e dello svergolamento sulla pala. Dalla teoria impulsiva vorticosa, per il bilancio della quantità di moto, si sono già ottenute le equazioni del momento assiale e angolare, rispettivamente:

$$dT = 4\pi \rho a(1 - a)V_\infty^2 r dr$$ \hspace{1cm} (3.69)

$$dM_r = 4\pi \rho V_\infty a'(1 - a)\Omega r^3 dr$$ \hspace{1cm} (3.70)

Per la teoria dell’elemento di pala con scia rotazionale, invece, abbiamo ottenuto:

$$dT = \rho V_\infty^2 \pi(1 - a)^2 \sigma C_L \frac{\cos \delta}{\sin^2 \delta} \left(1 + \frac{C_D}{C_L} \tan \delta \right) \frac{r^2 dr}{(1 + a')^2}$$ \hspace{1cm} (3.71)

$$dM_r = \rho(\Omega r)^2 \pi(1 + a')^2 \sigma C_L \frac{\sin \delta}{\cos^2 \delta} \left(1 - \frac{C_D}{C_L} \frac{1}{\tan \delta} \right) r^2 dr$$ \hspace{1cm} (3.72)

Sostituendo nella (3.70) l’espressione (3.57) è possibile ottenere l’equazione del momento angolare, per la teoria della quantità di moto, in funzione del solo a', anziché di a e a':

$$\tan \delta = \frac{(1-a)V_\infty}{(1+a')\Omega r} \Rightarrow (1 - a) = \frac{\tan \delta(1+a')\Omega r}{V_\infty}$$

$$dM_r = 4\pi \rho a'(1 + a')\tan \delta \Omega^2 r^4 dr$$ \hspace{1cm} (3.73)

A questo punto, andando ad uguagliare tra loro le equazioni della spinta elementare, (3.69) e (3.71), e della coppia elementare, (3.70) e (3.72), si ricavano le condizioni:

$$dT = 4\pi \rho a(1 - a)V_\infty^2 r dr = \rho V_\infty^2 \pi(1 - a)^2 \sigma C_L \frac{\cos \delta}{\sin^2 \delta} \left(1 + \frac{C_D}{C_L} \tan \delta \right) r dr$$
\[dM_r = 4\pi \rho V_r a'(1 - a)\Omega r^3 dr = \rho (\Omega r)^2 \pi (1 + a')^2 \sigma C_L \frac{\sin \delta}{\cos^2 \delta} \left(1 - \frac{C_D}{C_L \tan \delta} \right) r^2 dr \]

che semplificate danno come risultato un sistema di sue equazioni non lineari nelle incognite \(a \) e \(a' \):

\[\begin{align*}
\frac{4a}{(1-a)} &= \sigma C_L \frac{\cos \delta}{\sin^2 \delta} (1 + \frac{C_D}{C_L \tan \delta}) \\
\frac{4\sigma}{(a+a')} &= \sigma C_L \frac{1}{\cos \delta} (1 - \frac{C_D}{C_L \tan \delta})
\end{align*} \] (3.74)

I valori di \(a \) e \(a' \) vengono calcolati mediante un procedimento iterativo. Questo consiste nell’ipotizzare inizialmente i valori di \(a \) e \(a' \), da cui saranno calcolate le condizioni di flusso e i nuovi fattori di induzione.

L’elenco dei passi iterativi:

1. Ipotizzare i valori di \(a \) e \(a' \);
2. Calcolare l’angolo di inclinazione del vento relativo dall’equazione (3.58);
3. Calcolare l’angolo di attacco come \(\alpha = \delta - \beta \) e successivamente \(C_L \) e \(C_D \);
4. Aggiornare \(a \) e \(a' \) all’interno del sistema (3.74).

Il procedimento sarà ripetuto fino a quando i nuovi fattori d’induzione calcolati, differiscono, entro una certa tolleranza, rispetto a quelli calcolati dalla precedente iterazione.

3.3.5.3 EFFETTO DELLE PERDITE DI PUNTA.

Il \textit{BEMT}, come si è visto, è basato sulla teoria bidimensionale. Questo è un limite piuttosto ragguardevole visto che per poter progettare in maniera ottimale una turbina eolica è importante tenere in considerazione gli effetti tridimensionali dovuti all’ambiente esterno (turbolenze ventose) e all’aerogeneratore. Si rende possibile la considerazione di questi effetti approntando delle correzioni alle equazioni del metodo \textit{BEMT}. A tal proposito si introduce il metodo di Prandtl, il quale analizzò l’effetto tridimensionale della scia vorticosa prodotta alla punta della pala. Questa scia vorticosa è in grado di produrre ulteriori perdite, oltre a quelle già con-
siderate, che modificano la distribuzione del carico aerodinamico lungo la pala, perciò si utilizza un fattore di correzione per le equazioni del BEMT.

\[F = \left(\frac{2}{\pi} \right) \arccos(\exp(-f)) \]
(3.75)

dove il fattore \(f \) è funzione del numero di pale e della posizione radiale \(r \) dell’elemento della pala:

\[f = \frac{B}{2} \left(\frac{1 - r}{R \sin \delta} \right) \]
(3.76)
e ricordando che come prima approssimazione il modello BEMT considera \(\sin \delta \approx \delta \) per \(\delta \) piccoli, si può scrivere:

\[\delta = \frac{(1 - a)R}{\lambda r} \]

che sostituita nella (3.76) restituisce:

\[f = \frac{B}{2} \left(\frac{1 - r}{1 - a} \right) \lambda \]
(3.77)

Se si considerano anche gli effetti delle perdite indotte alla radice, allora il fattore \(f \) diventa:

\[f = \frac{B}{2} \left(\frac{r_0 - r}{R \sin \delta} \right) \lambda \]
(3.77)

dove \(r_0 \) è la distanza dal centro di rotazione alla radice.

Dal metodo di Prandtl si deduce che le perdite di punta tendono a favorire le turbine con elevato numero di pale, poiché gli effetti delle perdite indotte o perdite di punta tendono a ridursi e la turbina si comporterà come un disco attuatore ideale.
CAPITOLO QUARTO

4 GLI IMPIANTI EOLICI.

L'energia elettrica può essere utilizzata attraverso due grandi categorie di impianti: impianti per utenze isolate e impianti concepiti per essere allacciati a reti elettriche già esistenti.

Il primo tipo di impianto è dunque quello per la produzione di energia elettrica "di servizio" fornita da piccoli aerogeneratori di potenza inferiore a 1 chilowatt (rotore di 1-2 m.) per l'alimentazione di apparecchiature poste in luoghi isolati. A ciò aggiungiamo una produzione di elettricità per l'alimentazione di case sparse o insediamenti isolati non allacciati alla rete. Tali impianti sono costituiti da aerogeneratori di piccola taglia (3-20 chilowatt) e un sistema di accumulo (batteria) dell'energia elettrica prodotta nei momenti di vento favorevole.

Il secondo tipo di impianti eolici è connesso alla rete e si suddivide in due categorie: quello per la produzione di elettricità per l'alimentazione di piccole reti e quello collegato alla rete nazionale. Nel primo caso si tratta di impianti situati su piccole isole o in aree remote che sono alimentate da sistemi elettrici non connessi con la rete nazionale. Anche per questa tipologia di sistemi si può prevedere l'impiego congiunto di eolico e fotovoltaico (impianti ibridi), che potrebbero, in alcuni casi, integrarsi a vicenda su base annua. L'applicazione di maggior interesse per l'eolico è invece l'alimentazione delle grandi reti nazionali; per questo scopo sono utilizzate macchine di taglia medio-grande installate singolarmente o in gruppi di unità (wind farm) con potenze totali dell'ordine di alcuni megawatt o di alcune decine di megawatt.

4.1 LE WIND FARM ON-SHORE.

Più aerogeneratori collegati insieme formano le wind farm, le “fattorie del vento”, che sono delle vere e proprie centrali elettriche. Una wind farm è costituita da un gruppo di turbine eoliche situate nello stesso luogo, interconnesse tra loro da una rete di collegamento a medio voltaggio, che raccoglie l'energia prodotta da ciascuna turbina e la convoglia ad una stazione di raccolta, dove un trasformatore converte la corrente elettrica a medio voltaggio in corrente ad alta tensione e la immette nel sistema di trasmissione e distribuzione. Nelle wind farm la distanza tra gli aerogeneratori non è casuale, ma viene calcolata per evitare interferenze reci-
proche che potrebbero causare diminuzioni di produzione di energia. Di regola gli aerogeneratori vengono situati ad una distanza di almeno cinque-dieci volte il diametro delle pale.

4.2 **LE WIND FARM OFF-SHORE.**

Le *wind farm* più recenti tendono ad essere situate *offshore*, cioè in mare, lontano dalle coste, dove è possibile sfruttare i forti venti che soffiano, senza essere rallentati da ostacoli che sìpotrebbero invece incontrare sulla superficie dei mari, degli oceani, ma anche di grandi laghi. I costi di realizzazione e di manutenzione di *wind farm offshore* sono molto più elevati di quelli *onshore*, a causa dei costi di trasporto dei materiali, delle difficoltà costruttive, dei problemi di ancorare le torri al fondale e dei problemi legati alla corrosione ad opera delle acque marine sulle strutture, ma i vantaggi in termini di produttività sono molto elevati. Il posizionamento offshore di grandi *wind farm* risolve innanzitutto i problemi di impatto estetico e acustico poiché le torri sono situate oltre la linea dell’orizzonte visibile ad almeno 3 km dalla costa. Ma anche i problemi ambientali legati al pericolo costituito dalle torri per gli uccelli, rapaci e migratori in particolare, e per i pipistrelli sono molto più limitati. Le centrali in mare rappresentano, inoltre, un’utile soluzione per quei paesi densamente popolati e con forte impegno del territorio che si trovano vicino al mare. Gli impianti offshore rappresentano quindi, secondo la maggior parte degli esperti del settore, il vero futuro dell’energia eolica, sia in termini ambientali sia di potenziale produttivo.

4.3 **LA MAPPA EOLICA.**

Per produrre energia elettrica in quantità sufficiente è necessario che il luogo in cui si installa l’aerogeneratore sia molto ventoso. La valutazione della potenzialità produttiva di un impianto eolico è un’operazione difficile e complessa, che dipende dalle caratteristiche dei venti che soffiano nel luogo in cui l’impianto verrà realizzato. La conformazione di un terreno, a sua volta, influenza notevolmente la velocità del vento. Eventuali ostacoli possono influenzare profondamente velocità, potenza, direzione e distribuzione dei venti. Per quanto riguarda i rilievi montuosi, si è costatato che, mentre i pendii ripidi creano turbolenze pericolose per la stabilità e negative per il rendimento del generatore eolico, quelli più graduali favoriscono la concentrazione del vento. In generale la posizione ideale di un aerogeneratore è in un terreno con un numero non eccessivo di ostacoli con una pendenza compresa tra i 6 e i 16 gradi. Il
vento deve superare la velocità di almeno 5,5 metri al secondo e deve soffiare in modo costante per gran parte dell’anno. Per quanto riguarda i siti eolici offshore, i migliori sono quelli con venti che superano la velocità di 7-8 metri al secondo, che hanno bassi fondali (da 4 a 40 metri) e che distano oltre 3 chilometri dalla costa. La creazione di un impianto presuppone la conoscenza della “mappa eolica” del luogo, indicativa di quanto e come soffia il vento. Inoltre, prima di costruire un impianto, è necessario effettuare registrazioni sistematiche e per prolungati periodi di tempo, di grandezze come la velocità e le traiettorie dei venti che soffiano nei luoghi prescelti.

4.4 **IL FATTORE DI UTILIZZAZIONE.**

Il fattore di utilizzazione \(F_u \) o anche detto *Capacity Factor* di una turbina eolica o impianto eolico è un parametro fondamentale per valutare l’economicità dell’investimento. Esso infatti rapporta l’energia effettiva fornita da un impianto di potenza durante un periodo di tempo e la fornitura teorica di energia che avrebbe potuto offrire se avesse operato alla piena potenza nominale in modo continuativo nel tempo, ed è espresso come:

\[
F_u = \frac{\int_0^T P_{el}(t) \, dt}{P_{el,max}T} \tag{4.1}
\]

Dove \(T \) è il periodo di tempo considerato, solitamente un anno, ovvero 8760 ore. Il *fattore di utilizzazione* per gli impianti eolici difficilmente supera il 25 – 30%, che corrisponde a circa 2.200 ore annue di funzionamento degli impianti alla potenza nominale. Tuttavia esso non è una misura di rendimento quanto semplicemente il rapporto fra la potenza media della macchina e la potenza installata. Quindi è un indicatore del lavoro prodotto nell’arco dell’anno. La valutazione del fattore di capacità è tuttavia influenzata da diversi parametri, tra cui la variabilità del vento nel sito, ma anche dalla dimensione del generatore. Un piccolo generatore sarebbe più economico e in grado di raggiungere un fattore di capacità superiore ma produrrebbe meno elettricità (e quindi meno profitto) nel caso di venti forti. Viceversa, un grande generatore avrebbe costi più elevati ma nel caso di bassa velocità del vento genererebbe poca potenza, così che un fattore di capacità ottimale sarebbe di circa il 40-50%.
CAPITOLO QUINTO

5 AMBIENTE E TERRITORIO.

Una delle maggiori perplessità sull’installazione di centrali eoliche, da parte dei politici e delle popolazioni locali, dipende dalle preoccupazioni sul loro impatto ambientale. È quindi opportuno sottolineare le caratteristiche di questa fonte il cui impatto ambientale è limitato, specialmente attraverso una buona progettazione. Gli aerogeneratori non hanno alcun tipo di impatto radioattivo o chimico, visto che i componenti usati per la loro costruzione sono materie plastiche e metalliche. Gli aspetti ambientali che vengono presi in considerazione sono:

- Impatto visivo
- Rumore
- Effetti elettromagnetici
- Effetti su flora e fauna

5.1 IMPATTO VISIVO.

L’impatto visivo di un aerogeneratore alto dai 40 ai 60 metri è evidente, ma può essere ridimensionato realizzando gli impianti a una certa distanza dai centri abitati più vicini. Oggi si tende a diminuire l’impatto visivo disponendo le macchine su una sola fila e utilizzando i colori neutri (come il bianco). Il minor impatto ambientale - paesaggistico si ottiene anche collocando gli impianti in mare aperto oltre l’orizzonte visibile dalle coste. Si può ricorrere al mimetismo di carattere cromatico che consiste nel rendere i colori delle torri eoliche simili a quelli del paesaggio circostante (per esempio la parte inferiore che si mimetizza con il verde della campagna, mentre la parte superiore gradatamente azzurra come il cielo), oppure al mimetismo delle forme integrando i sistemi eolici su strutture preesistenti. Il terreno necessario per realizzare un impianto eolico è complessivamente vasto, dal momento che bisogna calcolare anche la distanza fra un generatore e l’altro. Da questo punto di vista, la densità di potenza (10 watt per metro quadrato) è piuttosto bassa.
5.2 **RUMORE.**

L’inquinamento acustico potenziale degli aerogeneratori è legato a due tipi di rumori: quello meccanico proveniente dal generatore e quello aerodinamico proveniente dalle pale del rotore. Per quanto riguarda il rumore, in termini di decibel, il ronzio degli aerogeneratori è ben al di sotto del rumore che si percepisce in città. Allontanandosi di trecento metri da una *wind farm* si rilevano gli stessi decibel che si avvertono normalmente stando nel traffico o nelle vicinanze di molte industrie. Attualmente comunque gli aerogeneratori ad alta tecnologia sono molto silenziosi. Si è calcolato che, ad una distanza superiore ai 200 metri circa, il rumore della rotazione dovuto alle pale del rotore si confonde completamente col rumore del vento che attraversa la vegetazione circostante.

5.3 **EFFETTI ELETTROMAGNETICI.**

Le possibili interferenze ai danni di apparecchi di telecomunicazione sono poco rilevanti. Come qualsiasi ostacolo, infatti, anche la macchina eolica può interferire con la propagazione delle telecomunicazioni, ma un’adeguata distanza rende tale interferenza trascurabile.

5.4 **EFFETTI SU FLORA E FAUNA.**

Quanto alle possibili alterazioni di flora e fauna, sulla base delle informazioni disponibili, si è verificato che le possibili interferenze di qualche rilievo riguardano solo l’impatto dei volatili con il rotore delle macchine. Gli uccelli migratori sembrano, invece, adattarsi alla presenza di questi ostacoli. L’impatto sulla vegetazione invece, si verifica soprattutto in fase di realizzazione dell’impianto, con la costruzione delle strade e delle fondazioni, nonché con le movimentazioni dei materiali. In conclusione, se si rispettano alcune accortezze nella fase di progettazione di una *wind farm*, tra tutte le industrie produttrici di energia, quella eolica è fra le più pulite e sicure. Durante il funzionamento non produce sostanze inquinanti, polveri e calore e anche dopo lo smantellamento tutto può tornare come prima, senza lasciare traccia né danni ad ambiente e persone.
CAPITOLO SESTO

RISULTATI NUMERICI

Il presente lavoro di tesi ha lo scopo di considerare le prestazioni di una turbina eolica ad asse orizzontale la cui geometria di pala è stata progettata a partire da un modello di profilo alare noto: il NACA 4412. Di esso si conoscono i parametri geometrici e i relativi coefficienti di portanza e resistenza per precisi valori di α e Re. Considerando un opportuno range di velocità del vento e le condizioni di installazione sia della macchina eolica sia del sito di ubicazione della stessa, utilizzando il programma WindTurbine in modalità Console per Windows, si ricavano le prestazioni di ognuna delle diverse tipologie di aerogeneratore in base al controllo di potenza su di esso applicato.

Il suddetto programma legge i dati, contenuti in appositi file, riguardanti la struttura geometrica e i coefficienti di portanza e resistenza del profilo alare in esame.

La struttura geometrica $(x$ e $y)$ riferita all’estradosso e all’intradosso del profilo è rappresentata in figura 1.

![Figura 1 Geometria del profilo alare NACA4412 riferita all'estradosso e all'intradosso.](image)

Per la determinazione dei dati riguardanti le coordinate x e y della forma geometrica della sezione del profilo alare, per i profili NACA $MPSS$ a 4 cifre, dove M è la freccia massima in percentuale di corda, P è la posizione della freccia massima in decimi di corda e SS è lo spessore massimo in percentuale di corda, si applica la legge di distribuzione dello spessore

$$y_t = 5SS \left(0.2969\sqrt{x} - 0.126 x - 0.3516 x^2 + 0.2843 x^3 - 0.1015 x^4 \right)$$ \hspace{1cm} (6.1)

e della linea media
Per ottenere l’estradosso dall’espressione

\[
\begin{align*}
\phi_{lm} = \begin{cases}
\frac{M}{\rho Z_0}(2Px - x^2) & \text{se } 0 \leq x \leq 1 \\
\frac{M}{(1-P)^2}(1 - 2P + 2Px - x^2) & \text{se } P \leq x \leq 1
\end{cases}
\end{align*}
\] (6.2)

e l’intradosso da:

\[
\begin{align*}
\phi = \phi_{lm} + \phi_t \cos \theta
\end{align*}
\] (6.3)

Per quanto riguarda i coefficienti aerodinamici, ovvero l’andamento dei coefficienti di portanza (Cl) e resistenza (Cd) calcolati in funzione dell’angolo di attacco (\(\alpha\)) si dimostra che tale andamento è attribuito ai 7 diversi ed imposti numeri di Reynolds (42000, 83000, 160000, 330000, 640000, 1200000, 2400000) riferiti ad ognuna delle 46 variazioni d’angolo \(\alpha\), da -9° a 36°. Figura 2 e figura 3.

Figura 2 Rappresentazione del coefficiente di portanza del profilo NACA 4412 per \(\alpha\) e Re.

Figura 3 Rappresentazione del coefficiente di resistenza del profilo NACA 4412 per \(\alpha\) e Re.

Nello specifico in figura 4 è rappresentato, per il profilo in esame, l’andamento dei coefficienti di portanza e resistenza ottenuto per un valore del numero di Reynolds pari a 640000 in funzione dell’angolo di attacco.
Successivamente, il codice WindTurbo ottimizza la geometria del profilo per ottenere il massimo valore del coefficiente di potenza (C_p) determinando così la distribuzione della corda e dell’angolo di calettamento lungo l’intera lunghezza della pala, distribuzioni osservabili dalle figure 5 e 6. Per geometria si intende in questo caso la distribuzione della corda e dell’angolo di calettamento. Questa la si ottimizza al massimo valore del coefficiente di potenza determinato da opportuni valori di parametri funzionali. Tali valori vengono utilizzati da due funzioni come termini noti di equazioni algebriche per il calcolo della corda e dell’angolo di calettamento, i quali rappresentano dati di ingresso utili al calcolo del coefficiente di potenza, attraverso l’applicazione del BEMT.

La funzione principale del programma è come accennato precedentemente il calcolo del coefficiente di potenza. Un calcolo questo reso possibile applicando il modello matematico *Blade Element Momentum Theory* attraverso il quale, per la determinazione dei coefficienti di induzione assiale e tangenziale esso applica un metodo di tipo iterativo. Successivamente, data la
geometria del tipo di profilo analizzato, il codice WindTurbo ricava la massa che corrisponde a 104,77 Kg, il volume che è pari a 0,0388 m3, la superficie che è pari a 4,41 m2 e in ultimo la forma dell’intera pala. In seguito, sulla base della tipologia di turbina e del controllo di potenza applicatole, servendosi della legge di variazione della densità in funzione dell’altezza da terra, è possibile ricavare i valori della potenza aerodinamica resa alle pale per un intervallo di valori di velocità che il vento può assumere. Inoltre, conoscendo la sola velocità media del vento, effettua uno studio statistico utilizzando la distribuzione di Rayleigh e ottenendo così la produzione energetica (KWh) per l’intero anno solare di utilizzo della turbina. I dati di input richiesti dal programma corrispondono ai dati relativi alle caratteristiche della turbina presa in esame, e sono i seguenti: numero delle pale pari a 3; raggio al mozzo pari a 0,3 m; raggio alla punta della lunghezza di 6 m; 40 gli elementi di pala; angolo iniziale di calettamento a 0°; velocità media del vento pari a 10 m/s ad un’altezza di 10 metri dal suolo.

Per un corretto funzionamento di una turbina eolica, anche per ragioni di sicurezza, è importante non sottovalutare il controllo della potenza. Esso è utile per l’ottimizzazione della potenza fra la velocità di avviamento e quella di funzionamento nominale, ma soprattutto per limitare la potenza nel campo di velocità del vento maggiori di quella nominale. Il passive stall control e il pitch control sono le due tipologie di controllo della potenza utilizzate per le quattro modalità di funzionamento della turbina da analizzare ed elencate qui di seguito:

1. turbina a velocità variabile con controllo di stallo.

2. turbina a due velocità con controllo di stallo.

3. turbina a velocità costante con controllo di stallo.

4. turbina a velocità costante con controllo di pitch.

Per ciascuna delle modalità di funzionamento analizzate gli ingressi stampati a video dal software sono rappresentati da: velocità di cut-in (U_{cin}), velocità di cut-out (U_{cout}), velocità media statistica del vento a 10 metri di altezza dal suolo (U_{mid}), altezza del mozzo della turbina (h) e altitudine sul livello del mare del sito di installazione ($Seal$). In caso di utilizzo della turbina a velocità costante si applica una variazione poiché in aggiunta ai parametri sopra citati si richiede il valore della velocità di rotazione che nel caso della turbina a due velocità con controllo di stallo (caso 2) equivale a quella più bassa. Inoltre, solo per il caso 4, il controllo di pitch obbliga la richiesta del limite massimo di potenza. Il programma chiedendo in input U_{mid}, h e $Seal$, tiene conto della variazione della velocità del vento e della densità
dell’aria al variare dell’altezza dal suolo. Questi due valori vengono calcolati rispettivamente attraverso due semplici equazioni:

\[U_h = U_{mid} \frac{\ln\left(\frac{h}{z_0}\right)}{\ln\left(\frac{h_{ref}}{z_0}\right)} \]

(6.5)

\[\rho = \frac{\rho_0 T_0 (T_0 - L \cdot Seal)}{T_0 - L \cdot Seal} \]

(6.6)

Per la velocità del vento si tiene conto del profilo di tipo logaritmico in cui compare la scabrezza \(Z_0 \), considerata costante e pari a 0,025 mm. Mentre per la densità si considerano i parametri dell’atmosfera standard a livello del mare, ossia: temperatura di 288 K, pressione 1 atm, densità 1,225 Kg/m³ e gradiente verticale di temperatura standard 0,0065 (con una variazione di 6°C ogni 1000 metri). I risultati ottenuti si trovano nella cartella Result ed è possibile leggerli nei file Energy.out e Geometry.out ognuno con numerazione di riferimento corrispondente al caso della tipologia di funzionamento della turbina studiata.

Analizziamo ora nello specifico ciascuno dei 4 casi sopra elencati.

1. **Turbina a velocità variabile con controllo di stallo.**

Il primo caso riguarda la turbina a velocità variabile con controllo della potenza tramite lo stallo. I parametri di ingresso richiesti dal software sono:

- Cut-in= 3m/s
- Cut-out=22 m/s
- Umid=10m/s
- \(h=35 \) m
- Seal=850m

Il principio di funzionamento di tale turbina è basato sul raggiungimento della massima efficienza aerodinamica su un ampio intervallo di velocità del vento, consentendo l’ottimizzazione della potenza nel campo \(U < U_{nom} \). Ciò è reso possibile perché per questa tipologia di turbina, risulta agevole adattare continuamente la velocità di rotazione delle pale alla velocità del vento (accelerando o decelerando), mantenendo così costante il TSR al valore di ottimo e quindi a \(C_p \) massimo. Questo continuo adattamento alla velocità del vento è indi-
spensabile per mantenere costante l’angolo d’attacco α di massima prestazione. Come conseguenza si ha il miglioramento della qualità dell’energia elettrica prodotta, poiché la coppia elettromagnetica è mantenuta costante e le fluttuazioni di velocità del vento vengono assorbite dalla variazione di velocità del rotore. Inoltre per questo genere di turbine è tipica la presenza di generatori sincroni o asincroni connessi alla rete tramite un convertitore di potenza che controlla la velocità del rotore. Il tutto è riscontrabile dai grafici rappresentati nelle figure 7 e 8, che riproducono l’andamento del coefficiente di potenza e del TSR, in funzione della velocità del vento.

![Diagram](image_url)

Figura 7 Curva del coefficiente di potenza in funzione della velocità del vento. **Figura 8** Curva rappresentativa del TSR in funzione della velocità del vento.

Osservando la figura 7 emerge che il valore della velocità del vento di massima efficienza è pari a circa 8 m/s e che i più alti valori della stessa si riscontrano ad una velocità del vento compresa tra la velocità di cut-in (3m/s) e quella di funzionamento ottimale (8m/s) delineando una certa costanza dell’andamento del coefficiente di potenza.

Dalla figura 9 che riproduce la curva caratteristica invece, emerge che, la velocità in condizioni di funzionamento nominale è di circa 15 m/s e la potenza registrata in condizioni di ottimo è all’incirca pari a 17 KW.
Osservando i grafici rappresentati nelle figure 7 e 8 si può rilevare che per valori della velocità che eguagliano o sono maggiori di quelli ottimali, si raggiunge la massima velocità di dimensionamento del rotore, ossia 127,32 giri/min (figura 10) e la turbina opera a velocità costante poiché il TSR decresce all’aumentare della velocità del vento grazie alla regolazione passiva dello stallo. Anche in situazioni in cui la velocità del vento aumenta ulteriormente generando una potenza estratta maggiore della potenza nominale del generatore, lo stallo interviene facendo diminuire l'efficienza e garantendo così la sicurezza della macchina. Nel controllo per stallo, il calettamento e lo svergolamento della pala sono progettati per causare l’insorgere dello stallo al raggiungimento di una velocità del vento predefinita. In figura 10 è riprodotta la variazione del numero di giri del rotore in funzione della velocità assunta dal vento.

Figura 9 Curva caratteristica della turbina a velocità variabile con controllo dello stallo

Figura 10 Velocità di rotazione del rotore in funzione della velocità del vento.
2. **Turbina a due velocità con controllo di stallo.**

Il secondo caso, invece, riguarda la turbina a due velocità, sempre con controllo dello stallo. Per questa tipologia in input si richiede anche il valore della velocità di rotazione più bassa, pari a 125 giri al minuto, oltre ai parametri precedentemente specificati:

- **Cut-in** = 3 m/s
- **Cut-out** = 22 m/s
- **Umid** = 10 m/s
- **h** = 35 m
- **Seal** = 850 m
- **ω1** = 125 giri al minuti

La turbina funziona a due velocità di rotazione prestabiliti, una di 125 giri/min per le basse potenze e l’altra di 187,5 giri/min per le potenze medio - alte, intuibili dal grafico di *figura 11* e 12. Il funzionamento di tale turbina tende ad unire le efficienze di due distinte macchine operanti ognuna a due diversi valori della velocità di rotazione fissa, cercando di mitigare le variazioni di velocità del vento, *figura 12* e di ottenere due valori di velocità nominale, rispettivamente 9 m/s e 13 m/s. Ricaviamo così da essi il valore di potenza estratta pari a 20 KW e 50 KW, leggibili dal grafico di *figura 13*. L’andamento della potenza estratta in funzione della velocità del vento è crescente in maniera pressoché lineare, fattore questo intuibile dalla curva caratteristica della turbina riportata in *figura 13*.

![Figura 11](image1.png) **Figura 11** Curva rappresentativa del TSR in funzione della velocità del vento.

![Figura 12](image2.png) **Figura 12** Curva del coefficiente di potenza in funzione della velocità del vento.
Il funzionamento a due velocità, rispetto a quello a velocità variabile, comporta un guadagno dell’efficienza di soli 2÷3 punti percentuali, ma talvolta risulta utile se consideriamo il rumore complessivo prodotto dalla turbina eolica. Ad una bassa velocità del vento si fa in modo che il rotore funzioni alla massima efficienza e con un basso rumore aerodinamico, poiché il rumore aerodinamico generato da un aerogeneratore è approssimativamente proporzionale alla quinta potenza della velocità periferica delle pale.

3. **Turbina a velocità costante con controllo di stallo.**

Per il terzo caso, cioè quello di una turbina a velocità di rotazione costante e con controllo dello stallo, la velocità di rotazione, come parametro di input, è imposta a priori ed è pari a 125 giri al minuto. Gli altri parametri di input valgono sempre:

- Cut-in= 3m/s
- Cut-out=22 m/s
- Umid=10m/s
- h=35m
- Seal=850m
- ω=125 giri al minuti

La velocità di rotazione è fissata dalla frequenza di rete ed è dunque costante (in realtà leggermente variabile per effetto dello scorrimento, fenomeno utile a generare la coppia per i motori asincroni). Dal grafico di figura 14 che rappresenta la variazione del TSR inversamente proporzionale alla velocità del vento.
Il grafico di figura 14 illustra la variazione del TSR al variare della velocità del vento. Facendo riferimento all’equazione che definisce il TSR, che è inversamente proporzionale alla velocità del vento, si rileva la costanza di ω.

![Figura 14](image)

Figura 14 Curva rappresentativa del TSR in funzione della velocità del vento.

L’uso di questa gamma di turbine è di conseguenza strettamente legato al tipo di generatore di corrente utilizzato, che solitamente è di tipo sincrono o asincrono semplice (a gabbia di scottolo). La qualità dell’energia elettrica prodotta è di ridotta entità, data l’impossibilità di variare la velocità di rotazione soprattutto in caso di raffiche di vento, le quali si distribuiscono sulla coppia del generatore in fluttuazioni della componente attiva e reattiva della corrente. Il massimo valore del coefficiente di potenza in funzione della velocità del vento viene raggiunto per questo schema di controllo ad un’unica velocità di circa 9 m/s. Si osserva l’andamento di tale coefficiente in figura 15.

![Figura 15](image)

Figura 15 Curva del coefficiente di potenza in funzione della velocità del vento.

![Figura 16](image)

Figura 16 Curva caratteristica della turbina a velocità costante con controllo dello stallo.

Il tratto lineare che va approssimativamente dalla velocità di cut-in o avviamento, alla velocità del vento che porta a raggiungere la massima potenza di 14 m/s, è il luogo dei punti di funzionamento di tale turbina. Al crescere della velocità del vento al di sopra di U_{nom} (14m/s),
figura 16, la turbina inizia a stallare dalla zona di radice delle pale e lo stallo si propaga a tutto il rotore al continuo progredire della velocità del vento. Si determina così un progressivo calo dell’efficienza come facilmente riscontrabile dalla curva del coefficiente di potenza riportata in figura 15.

4. **Turbina a velocità costante con controllo di pitch.**

Infine il quarto ed ultimo caso riguarda la turbina a velocità di rotazione costante, figura 17, con controllo dell’angolo di pitch. Oltre al valore della velocità di rotazione, 125 giri al minuto, è richiesto in input anche il valore del limite massimo di potenza, 30.000 W. Gli altri parametri in input rimangono invariati:

- Cut-in= 3 m/s
- Cut-out=22 m/s
- Umid=10 m/s
- h=35 m
- Seal=850 m
- Omega=125 giri al minuti
- MPL=30000 W

![Figura 17](image)

Figura 17 Curva rappresentativa del TSR in funzione della velocità del vento.

Questo tipo di turbina è progettata per raggiungere la massima efficienza ad una velocità ottimale del vento. Ciò è riscontrabile dalla curva del coefficiente di potenza rappresentata in
figura 18, da cui emerge la ristretta area di massima efficienza intorno al valore della velocità ottimale del vento, corrispondente a circa 9 m/s.

Figura 18 Curva del coefficiente di potenza in funzione della velocità del vento.

Figura 19 Curva caratteristica della turbina a velocità costante con controllo del pitch.

Figura 20 Variazioni dell'angolo di pitch al variare della velocità del vento.

CONCLUSIONI

Esaminando i dati emersi è possibile affermare che i valori ottenuti dall’analisi della turbina in esame, sono differenti e determinati per ciascuna delle quattro diverse condizioni di funzionamento all’interno di un medesimo sito. Si tratta di valori quali la potenza d’uscita \(P \), la produzione energetica annua \(E \) e il fattore di utilizzazione \(CF \), riportati nella tabella qui di seguito:

<table>
<thead>
<tr>
<th>TURBINA</th>
<th>P (W)</th>
<th>E (KW-h)</th>
<th>CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo 1</td>
<td>29.188,21</td>
<td>253.937,46</td>
<td>0,205</td>
</tr>
<tr>
<td>Tipo 2</td>
<td>48.864,58</td>
<td>425.121,89</td>
<td>0,097</td>
</tr>
<tr>
<td>Tipo 3</td>
<td>27.527,34</td>
<td>239.487,87</td>
<td>0,144</td>
</tr>
<tr>
<td>Tipo 4</td>
<td>19.255,33</td>
<td>167.521,39</td>
<td>0,135</td>
</tr>
</tbody>
</table>

Per la turbina del caso 1 (velocità variabile con controllo di stallo) tali valori sono 29.188,21 W e 253.937,46 KW-h., per la turbina del caso 2 (due velocità di rotazione costanti con controllo di stallo) sono invece 48.864,58 W e 425.121,89 KW-h., per la turbina del caso 3 (velocità di rotazione costante con controllo di stallo) si parla di una potenza d’uscita pari a 27.527,34 W e di una produzione energetica annua di 239.487,87 KW-h, infine, per la turbina del caso 4 (velocità di rotazione costante con controllo di pitch) la potenza d’uscita ha un valore di 19.255,33 W e la produzione energetica annua è pari a 167.521,39 KW-h. Dai dati emersi verrebbe spontaneo consigliare l’utilizzo della turbina di tipo 2 per il valore piuttosto alto di energia annua prodotta rispetto alle altre tre tipologie specificate. In realtà, analizzando la curva caratteristica di tale turbina, figura 13, notiamo che il valore di potenza generata risulta essere eccessivamente alto rispetto alle grandezze geometriche che caratterizzano la turbina, così da escludere l’ipotesi del suo utilizzo e supporre la presenza di un errore all’interno dell’algoritmo del programma. Ciò fa ricadere la scelta sulla turbina di Tipo 1 i cui valori, compreso il \(CF \), sembrano essere maggiormente accettabili, in conseguenza del fatto che essa è in grado di ruotare ad una velocità direttamente proporzionale alla velocità del vento, sua caratteristica peculiare. Questo si traduce anche nella capacità di assorbire le fluttuazioni ventose e ridurre, gli stress meccanici e l’inquinamento acustico, poiché in condizioni di venti deboli il rumore ambientale è notevolmente limitato. A queste condizioni ventose tale tipologia di turbina risulta essere la più indicata in quanto il rotore ruota a bassa velocità e dunque il rumore ambientale non maschera quello prodotto dalla turbina. In aggiunta essa garantisce un
valore molto alto di potenza resa all’avviamento lavorando già alla massima efficienza in condizioni di bassa ventosità.

La scelta della tipologia di turbina da installare viene valutata tenendo in considerazione oltre all’energia prodotta anche l'aspetto economico, considerando che il maggiore o minore investimento è determinato dalla struttura di sostegno e in piccola percentuale anche dal moltiplicatore di giri e dai componenti ausiliari, *figura 21*.

![Diagrama di percentuali](image)

Figura 21 Peso economico in percentuale per ogni componente costituente la turbina eolica.

Come si osserva dal grafico, la struttura di sostegno ha un’incidenza del 26% sull’intero investimento. Per la turbina a velocità variabile non si richiede una struttura di sostegno eccessivamente sofisticata poiché gli stress meccanici che essa deve sostenere sono limitati, grazie alla capacità del rotore di adattarsi ai continui cambiamenti di velocità del vento. Tuttavia la presenza del convertitore la cui incidenza è del 5%, e dei vari dispositivi elettrici molto più complessi, per tali sistemi risulta essere uno svantaggio in quanto incrementa i rispettivi costi. Una fetta alquanto grande del nostro diagramma a torta è rappresentata dal rotore, all’interno del quale rientra il profilo alare. Per tale turbina il profilo alare è di notevole importanza perché è chiamato in causa per il controllo della potenza. Per esso è dunque indispensabile uno studio sofisticato della geometria da assegnargli, azione questa che fa lievitare i costi d’investimento della turbina. Concludendo possiamo affermare che nel complesso la turbina di Tipo 1 rappresenta la miglior soluzione garantendo una buona produzione energetica annua e il conseguente abbattimento del costo di investimento dell’impianto.
BIBLIOGRAFIA.

SITOGRAFIA.