VIII Edizione del Meeting

"Nuove Prospettive in Chimica Farmaceutica"

Parma, 9 – 11 Giugno 2014
Starhotel Du Parc

Book degli Abstracts
ANTI-INFLAMMATORY POTENTIAL AND FAST UHPLC-DAD-IT-TOF PROFILING OF POLYPHENOLIC COMPOUNDS EXTRACTED FROM GREEN LETTUCE (LACHTUA SATIVA L.; VAR. MARAVILLA DE VERANO)

Sommella E.1, Pepe G.1, Manfra M.2, De Nisco M.3, Tenore G. C.4, Giannetti D.4, Scopa A.5, Sofo A.5, Marzocco S.1, Adesso S.1, Novellino T.6 and Campiglia P.1

1Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
2Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, I-85100 Potenza, Italy
3Pharmaco-Chemical Department, Faculty of Pharmacy, University of Messina, Viale Annunziata, I-98168 Messina, Italy
4Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy
5School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, I-85100 Potenza, Italy
6Department of Clinical Medicine and Surgery, University of Napoli Federico II, Via S. Pansini, 5, 80131, Napoli, Italy

pcampigl@unisa.it

Fresh cut vegetables represent a widely consumed food worldwide. Among these, lettuce (Lactuca sativa L.) is one of the most popular and accessible on the market. The growing interest for this “healthy” food is related to the content of bioactive compounds, especially polyphenols, that show many beneficial effects. In this study, we report the anti-inflammatory and antioxidant potential of polyphenols extracted from green lettuce (var. Maravilla de Verano), in J774A.1 macrophages stimulated with Escherichia coli lipopolysaccharide (LPS) [1]. Lettuce extract significantly decreased reactive oxygen species and nitric oxide release and inducible nitric oxide synthase and cyclooxygenase-2 expression. Moreover, lettuce treatment also enhanced the cytoprotective heme-oxygenase-1 enzyme expression thus contributing to its beneficial effect during inflammation. Furthermore, a detailed qualitative and quantitative profiling of the polyphenolic content was carried out through a fast and accurate ultra-high performance liquid chromatography-ion-trap-time-of-flight mass spectrometer (UHPLC-IT-TOF) platform [2]. In the extracts, hydroxycinnamic acid derivatives and flavon-3-ols were the most abundant compounds. The method showed fast separation (10 min), together with satisfactory retention time and peak area repeatability, with maximum RSD % values of 0.80 and 8.68, respectively, as well as good linearity (R² ≥ 0.999) and mass accuracy (± 5ppm).

References