Predictive models of wine tartaric stability using fourier transform infrared spectroscopy

Mario Malacarne 1, Luca Bergamo 1, Daniela Bertoldi 1, Giorgio Nicollini 1, Roberto Larcher 1
1 LASMA Fondazione Edmund Mach, via E. Mach, 1, 38010 San Michele all’Adige, Italy
E-mail: mario.malacarne@lasma.it

Abstract
The feasibility of using Fourier Transform Infrared Spectroscopy (FT-IR) for the prediction of tartaric stability of wines was investigated (Guerrero et al., 2010; Kupina & Shrikhande, 2003; Palma & Barroso, 2002; Patz et al., 2004; Romero-Fernández et al., 2012; Soriano et al., 2007; Versari et al., 2011). The calibration set was made up of 252 white, 150 red and 38 rosé wines, representing the most diffused Italian varieties; the validation set was made up of 81 white, 33 red and 3 rosé wines. Two of the experimental approaches most commonly adopted in wine testing laboratories, the Microconductometric Test and the Cooling Test (−4°C for 5 days), were used as reference methods to evaluate the tartaric stability of the samples collected. Discriminant Analysis (DA), Artificial Neural Networks (ANN) and Partial Least Square regression (PLS) were considered for proposing new predictive models for tartaric stability, separately for white and red or rosé wines. The results demonstrated the possibility of developing new predictive models for wines, so long as tartaric stabilisation products have not been added, starting from FT-IR analysis. The best results were obtained by the models based on the Cooling Test as reference method. In particular, for white wines DA allowed to correctly classify into the right category (“stable”, “unstable” or “suspect”) the 84% of the calibration samples and the 73% of the validation samples, whereas ANN for red and rosé wines permitted to correctly classify the 83% of samples in both datasets. Nevertheless, also PLS for white wines and DA for red and rosé wines gave a right classification for more than 70% of samples.

Polyphenolic profile in berry skin and wine of Vitis vinifera L. cv. Aglianico (Basilicata, Italy)

Michele Manfra 1, Mauro De Nisco, 2 Adele Bolognesi, 3 Adriano Sofo, 4 Antonio Scopa, 4 Gian Carlo Tenore, 5 Cristian Salvatore, 6 Maria Teresa Russo 7
1 Dipartimento di Chimica, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano 10, I-85100 Potenza, Italy, 2 Dipartimento Farmaco-chimico, Facoltà di Farmacia, Università di Messina, Viale A. Hunzinger, I-98168 Messina, Italy, 3 Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia 4, I-80125 Napoli, Italy, 4 Dipartimento di Scienze dei Sistemi Culturali, Forestali e dell’Ambiente, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano 10, I-85100 Potenza, Italy, 5 Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy, 6 Dipartimento di Scienze Farmaceutiche e Biomediche, Università di Salerno, Via Ponte Don Mefilho 11C, I-84084 Fisciano, Italy, 7 Dipartimento di Scienze e Tecnologie Agro-Forestali ed Ambientali, Università Mediterranea di Reggio Calabria, I-89124 Reggio Calabria, Italy.
E-mail: Michele.Manfra@unibas.it

Abstract
Anthocyanins are a very large group of red-blue polyphenol plant pigments, located within vacuoles of the skin cells of red grapes and characterized by a positive charge on the molecule which enables them to absorb light. These naturally occurring pigments from grapes are glycosides having a sugar bonded at the 3 position. The presence of this sugar helps the anthocyanins maintain solubility in water and allows pigments to diffuse into the must and wine during maceration, contributing to the color and antioxidant properties of red wines. The antioxidant properties, named as total antioxidant capacity (TAC) are well known and are correlated with electron transfer processes promoted by glycosylated and methoxy derivatives of anthocyanins as malvidin-3-glucoside arising from the free anthocyanin fraction of the red wines. Based on the widely accepted knowledge that antioxidants are potent scavengers of free radicals and serve as inhibitors at both initiation and promotion-propagation stages of tumor promotion-carcinogenesis and protect cells against oxidative damage, it seemed of interest to investigate anthocyanin presence and composition within the grape berries of Aglianico (Basilicata-Italy) [1], one of the most ancient vineyards introduced from Greece in the southern Italy in pre-Roman times.