Italus Hortus

Rivista scientifica di orticoltura, floricoltura e frutticoltura

Fondata nel 1993

Riassunti dei lavori

VIII Giornate Scientifiche SOI

Sassari, 8-12 maggio 2007

Pubblicata dalla Società di Ortoflorofrutticoltura Italiana (SOI)

Volume 14, supplemento al numero 2

marzo - aprile 2007
Riassunti dei lavori presentati alle

VIII Giornate Scientifiche SOI

Sassari, 8-12 maggio 2007

A cura di

Innecenza Chessa e Maria Rosario Filigheddu
Identificazione di sequenze e domini di fattori trascrienziali differenzialmente espressi durante lo sviluppo e la maturazione del frutto in Citrus sinensis L.
Giuseppe Martelli, Luigi Milella, Carmelo Mannone, Ivana Greco

Analisi dei trascritti caratterizzanti il processo di maturazione in ficodindia (Opuntia ficus-indica L.)
Luigi Milella, Benedetta Chiancone, Maria Antonietta Germanà, Ivana Greco, Giuseppe Martelli

Valutazione comparata dell’espressione di geni coinvolti nel metabolismo dei carboidrati in semi e polpa di frutti di pesco
Alberto Nonis, Rachele Falchi, Giannina Vizzotto

Rigenerazione in vitro di cloni di perastro (Pyrus pyraster Burgsd.) tolleranti alla clorosi ferrica e analisi della variabilità somaclonale mediante marcatori RAPDs
Maria Antonietta Falombi, B. Lombardo, Emilia Caboni

Analisi molecolare della microflora di salmone di fermentazione di olive da tavola siciliane
Marcello Tagliavini, Maria Vitale, Raffaele Mule

Costruzione di una mappa genetica di Pesco per l’individuazione di caratteri legati alla qualità del frutto
Elisa Vendramin, Sabrina Miceli, Jessica Giovannazzi, Roberta Quarta

Analisi comparativa della regione del locus tra due differenti mappe di Prunus
Ignazio Verde, Elisa Vendramin, Jessica Giovannazzi, Roberta Quarta, Maria Teresa Dettori

Sessione 3: Biologia, fisiologia e morfologia

Contributo allo studio della dormienza in Vitis vinifera L.: osservazioni morfocronologiche
Lucia Andreini, Giancarlo Scalabelli

Il ruolo dell’ammoniaca organica con residui vegetali, rifiuti organici e compost nel controllo dei funghi fitopatogeni tellurici
Giuliano Bonamoni, Cetio Pate, Vincenzo Antignani, Felice Scala

Effetto dell’impollinazione e della emasculazione sulle infiorescenze e sui singoli fiori di Lilium
Gianluca Burchi, Alessandro Ballarin, Arianna Venni

Sull’autocompatibilità della cultivar di olivo coratina
Salvatore Camposeo, Angelo Godini

Monitoraggio di rotenone in olivo da agricoltura biologica mediante spettrometria di massa tandem
Maria Anna Caravita, Anna Russo, Cinzia Benincasa, Fausto De Rose, Giovanni Sindona, Massimiliano Fellegrino, Enzo Perni

Conducibilità idrica in steli di fiori reclusi
Albino Maggio, Stefania De Pascale

Risposta vegetativa del pero e della vite all’accumulo di Cu nel suolo
Donatella Malaguti, Maurizio Quartieri, Giovambattista Sorrenti

Alcuni effetti dell’ombreggiamento sulla crescita di mele ‘Fuji’ in fase di espansione cellulare
Luigi Manfrini, Marco Ziberi, Luca Corelli Grappadelli

Clorosi ferrica e stress ossidativo nel pesco
Andrea Masia, Antonio Cellini

La crescita del kiwi durante il suo studio finale
Brunella Merandi, Pasquale Losciule, Luigi Manfrini, Marco Studhalter, Luca Corelli Grappadelli

Analisi termografica per lo studio della patchiness stomatica in vite
Davide Neri, Gianluca Savini, Marilla Santini
Rizogeneresi in fragola
Davide Neri, Nobuo Sugiyama, O New Lee, Takeshi Kurokura

Assorbimento e ripartizione di azoto fogliare in piante adulte di Vitis vinifera
Dulio Forro, Cinzia Dorigatti, Riccardo Pasquazzo, Luca Ziller, Federica Camin

Il calcolo del frutto di Actinidia: interazioni tra fattori ambientali, morfologia e fisiologia del frutto
Cristos Xiloyannis, Bartolomeo Dicchio, Giuseppe Montanaro, M. Mazzuc

Partizione della sostanza secca in piante di Actinidia deliciosa
Luca Castellino, Alessandro Roveri

Adattamenti fisiologici dell'olivo a condizioni di carezza idrica
Bartolomeo Dicchio, Adriano Sofo, Giuseppe Montanaro, Giuseppe Tarantini, Cristos Xiloyannis

Sulla produzione di polline del pesco
Giuseppe Ferrara, Salvatore Campese

Osservazioni sulla vitalità e germinabilità in vitro del polline di olivo
Alessio Ferri, Giuseppe Padula, Edgardo Giordani, Elvio Bellini

Studio di anomalie florali in albieneo – cv ‘Carmen Top’
Alessandra Gallotta, Vito Giorgio

Anatomia dell’escissione in fiori e frutticini di Olea europaea L.
Tommaso Ganino, Deborah Beghiò, Rossella Nisi, Linda Montali, Andrea Fabbri

Variabilità fenotipica e genotipica dell’architettura radicale in Arabidopsis thaliana
Veronica Giorgi, Olivier Lodey

Limitazioni stomatiche e biochimiche della fotosintesi di piante di vite (cv ‘Agliarico’) allevate in contenitore e sottoposte a deficit idrico
Pasquale Giorio, Giuseppe Sorrentino, Maria Soprano, Francesco La Cara, Roberto Pellecchia, Elena Ionata

Embriogenesi somatica da fiore intero di vite
Ivano Gribaudo, Rosalina Villania, Giorgio Gambino

Applicazioni di tomografia geoelettrica in 2-D e 3-D per lo studio non distruttivo della variabilità spaziale delle proprietà fisiche del terreno e della distribuzione degli apparati radicali
Laura Lazzari, Mariana Amato, Giuseppe Celano, Antonio Loprete, Gianfranco Morelli, Vincenzo Lapenna, Antonio Satriani

Variazioni giornalIERE dello stato idrico e del contenuto di marmito e acido malico in alberi di olivo delle cultivar ‘Biancolilla’ e ‘Cerasuola’
Riccardo Lo Bianco, Giuseppe Talluto, Luigi Di Marco

Relazioni tra rapporto foglie/frutti, efficienza fotosintetica e biosintesi del sorbitolo nel pesco
Brunella Merandi, Pasquale Leosciale, Pamela Chiai, Mark W. Rieger

Risultati preliminari relativi all’influenza delle gibberelline sull’induzione a fiore in radicchio ‘Rosso di Chioggia’ medio (Cichorium intybus L. var silvestre Bischoff)
Carlo Nicoletto, Ferdinando Pimpini

Un biennio di osservazioni sulla cascata delle gemme a fiore di una popolazione di cultivar di pesco in ambiente meridionale
Marino Palasciano, Giuseppe Ferrara

Meccanismi morfo-fisiologici di adattamento alla carenza idrica del ‘Sangiovese’
Alberto Fallotti, Despina Petoumenou, Silvia Vignaroli
Partizione della sostanza secca in piante di *Actinidia delicosa*

Luca Castellino, Alessandro Roversi
E-mail: alessandro.roversi@unicatt.it
Istituto di Frutticoltura, Università Cattolica del Sacro Cuore, Piacenza

La conoscenza della sostanza secca prodotta annualmente da una specie arborea risulta indispensabile per determinare le quantità di elementi minerali che la coltura estrae dal suolo.

Indagini italiane al riguardo concorrono il cilegio ed il nocciole, ma nulla si sa dell’Actinidia. Tali indagini, riguardano generalmente la massa di foglie, frutti e materia le di risulta della potatura verde e secca assai facilmente determinabile. Relativamente, invece, alla sostanza secca allocata nelle strutture permanenti della pianta (fusto, rami e radici) occorre rilevare l’intera pianta e perciò dati in merito sono praticamente sconosciuti.

Approfittando dell’estirpazione di 2 actinidi, si è potuto misurare la sostanza secca dell’intera pianta. Si è operato su un actinidie di 20 anni di età allevato a pergole tta e di uno conostato allevato al tondeo, in provincia di Cuneo. Per ognuno di essi sono state scelte 3 piante femminili rappresentative di una maschile. Di tutte tali 8 piante, si è provveduto al prelievo completo ed alla misura della massa fresca e secca invece alla materia delle potature invernali e al verde, ai frutticini del diradamento, ai frutti alla raccolta, alle branche, alle branche, al fusto, al colletto e dall’intero apparato radicale.

I risultati mostrano sinteticamente che la maggior massa secca è sempre raccolta nelle piante femminili rispetto alle maschili e nella pergolata rispetto al tendone. La distribuzione percentuale vede, per entrambe le forme di allevamento, i valori massimi per il fusto ed le branche principali, seguiti dai frutti alla raccolta e dall’apparato radicale.

Questa dati, congiuntamente a quelli dei contenuti in elementi degli organi stessi o di loro partiti, consentirebbero di determinare accuratamente la asportazione minerali della colture.

Adattamenti fisiologici dell’olivo a condizioni di carenza idrica

Bartolomeo Dichio, Adriano Sofo, Giuseppe Montanaro, Giuseppe Tataranni, Cristos Xiroyannis
E-mail: bartolomeo.dichio@uniba.it
Dipartimento di Scienze dei Sistemi Culturali, Forestali e dell’Ambiente, Università della Basilicata

L’olivo (*Olea europaea L.*) è una specie coltivata prevalentemente nel bacino del Mediterraneo ed è in grado di resistere a periodi prolungati di carenza idrica in condizioni ambientali caratterizzate da alte temperature e alti livelli di irraggiamento. Questa specie è in grado di tollerare lo stress idrico per mezzo di una vasta gamma di meccanismi fisiologici e biochimici. Le piante di olivo diminuiscono il contenuto idrico e il potenziale idrico dei loro tessuti, creando un alto gradiente di potenziale irraggiamento radici e radici. In condizioni di carenza idrica, le piante di olivo arrestano la crescita della chioma e iniziano ad effettuare fotosintesi e traspirazione. Questo permette una continua produzione di assimilati ed il loro accumulo nei vari organi della pianta, ed in particolare nel sistema radicale, creando un più alto rapporto radici/chioma rispetto a quello delle piante in condizioni idratiche ottimali.

L’aggravamento idrofittile attivo e passivo gioca un ruolo importante nel mantenere il turgore cellulare e l’attività fotosintetica. I carboidrati, soprattutto manometto e glucosio, hanno un ruolo chiave nei meccanismi di aggiustamento idrici fotossintetici delle foglie. Gli acidi organici, quali l’acido citrico e l’acido malico, sono anch’essi in grado di influenzare il potenziale osmotico delle foglie. L’aggravamento idrofittile osservato nelle foglie, inoltre, permette il mantenimento del turgore cellulare, evitando o ritardando la separazione delle radici dalle particelle del suolo. L’accumulo di proline nelle foglie e nella radici indica un possibile ruolo per la glicosilazione nel turgore cellulare. In piante di olivo sottoposte a stress idrico severe, la componente non-photosintetica della fotosintesi è quella più sensibile in quanto avviene il rinviamento del fotosistema 2. Inoltre, il livello di irraggiamento cui sono sottoposte i piante influisce significativamente sui meccanismi di fotoinibizione e sui parametri di assimilazione fotografica delle foglie. L’aumento della concentrazione di malondialdeide e dell’attività della lipossigenasi, due marcatori biochimici del danno ossidativo correlato allo stress idrico, suggeriscono che il deficit idrico è associato a meccanismi di per ossidazione lipidica a livello cellulare, sia nelle foglie che nelle radici. Infine, nelle piante di olivo, l’attività di alcuni enzimi antossidanti, quali superossido dismutasi, catalasi, ascorbato perossisodisace e perossisodisace, coinvolte nell’eliminazione di specie attivate dall’ossigeno e nei meccanismi di trasduzione del segnale, aumentano durante un periodo di carenza idrica. Questo suggerisce che un maggiore livello di attività di questi enzimi è richiesto per una migliore protezione nei confronti dello stress ossidativo dovuto a deficit idrico.

Sulla produzione di polline del pesco

Giuseppe Ferrara, Salvatore Campezzo
E-mail: ferrara.g@agr.uniba.it
Dipartimento di Scienze delle Produzioni Vegetali, Università di Bari

La qualità e la quantità di polline prodotto dalle specie frutticole sono fattori molto importanti per valutare la capacità implonimattiva di una cultivar e per impieghi nel miglioramento genetico. Limitate sono le informazioni bibliografiche relative alla quantità ed alla qualità (intesa come vita leità dei granuli pollinici) del vasto germoplasma peschico presente oggi nel mercato. L’obiettivo di questo lavoro è stato quello di verificare la produzione e la vitalità dei granuli pollinici di un vasto e rappresentativo assortimento varietale di pesco.

La prova è stata condotta nel triennio 2004/2006 su 24 cultivar di pesco presenti nel campo di valutazione varietale del Dipartimento di Scienze delle Produzioni Vegetali