Logo Unibas

Maria Carmela De Bonis

Associate Professor in Numerical Analysis - SSD MATH-05/A

List of Publications

De Bonis, Maria Carmela; Mastroianni, Giuseppe; Notarangelo, Incoronata:
Elementi di teoria dell'approssimazione polinomiale: appunti dalle lezioni,
Casa Editrice: Aracne
Collana: Mathematical and Computational Biology and Numerical Analysis, Vol. 3
Data di pubblicazione: Marzo 2018
ISBN: 978-88-255-1177-2
  1. De Bonis, M.C.: An algorithm for the evaluation of two-dimensional Hilbert transform, Journal of Electrotechnics and Mathematics (Pristina), 4 (1999), 1-34.
  2. De Bonis, M.C.: An algorithm for the evaluation of two-dimensional Hilbert transform with non-standard weight functions, Facta Universitatis (Nis), Ser. Math. Inform. 14 (1999), no. 14, 109-134.
  3. De Bonis, M.C., Russo, M.G.: Computation of the Cauchy principal value integrals on the real line, Proceedings of the ``Workshop on Advanced Special Functions and Applications", Melfi (PZ), Italy, 9-12 May 1999, eds. D. Cocolicchio, G. Dattoli and H.M. Srivastava (ARACNE, Rome) 2000, 197-210.
  4. De Bonis, M.C., Della Vecchia, B., Mastroianni, G.: Approximation of the Hilbert transform on the real line using Hermite zeros, Mathematics of Computation, 71 (2002), no. 239, 1169-1188. doi:10.1090/S0025-5718-01-01338-2
  5. De Bonis, M.C., Della Vecchia, B., Mastroianni, G.: Approximation of the Hilbert transform on the real semiaxis using Laguerre zeros, Proceedings of the 9th International Congress on Computational and Applied Mathematics (Leuven, 2000), Journal of Computation and Applied Mathematics, 140 (2002), no. 1-2, 209-229. doi: 10.1016/S0377-0427(01)00529-5.
  6. De Bonis, M.C., Mastroianni, G., Viggiano, M.: K-functionals, Moduli of Smoothness and Weighted Best Approximation on the semiaxis, Functions, Series, Operators (L. Leindler, F. Schipp, J. Szabados, eds.) Janos Bolyai Mathematical Society, Budapest, Hungary, Alexits Memorial Conference (2002), 181-211.
  7. De Bonis, M.C., Mastroianni, G., Russo, M.G.: Polynomial approximation with special doubling weights, Acta Scientiarum Mathematicarum (Szeged), 69 (2003), no. 1-2, 159-184.
  8. De Bonis, M.C., Mastroianni, G.: Some simple quadrature rules for evaluating the Hilbert transform on the real line, Archives of Inequalities and Applications, 1 (2003), no. 3-4, 475-494.
  9. De Bonis, M.C., Frammartino, C., Mastroianni G.: Numerical methods for some special Fredholm integral equations on the real line, Proceedings of the 10th International Congress on Computational and Applied Mathematics (ICCAM-2002), Journal of Computation and Applied Mathematics, 164/165, (2004), 225-243. doi: 10.1016/S0377-0427(03)00652-6.
  10. Cvetkovic, A., De Bonis, M.C.: Projection methods for Cauchy singular integral equations on the bounded intervals, Facta Universitatis (Nis), Ser. Math. Inform., Special Issue dedicated to Prof. Giuseppe Mastroianni for his 65th birthday, 19 (2004), 123-144.
  11. De Bonis, M.C., Mastroianni, G.: Mapping properties of some singular operators in Besov type subspaces of C(-1,1), Integral Equations Operator Theory, 55 (2006), no. 3, 387-413. doi: 10.1007/s00020-005-1396-y.
  12. De Bonis, M.C., Mastroianni, G.: Projection methods and condition numbers in uniform norm for Fredholm and Cauchy singular integral equations, SIAM Journal on Numerical Analysis, 44 (2006), no. 4, 1351-1374. doi: 10.1137/050626934.
  13. De Bonis, M.C., Laurita, C.: Numerical treatment of second kind Fredholm integral equations systems on bounded intervals, Journal of Computational and Applied Mathematics, 217 (2008), no. 1, 64-87. doi: 10.1016/j.cam.2007.06.014.
  14. De Bonis, M.C., Laurita, C.: Nyström methods for Cauchy singular integral equations. A survey, Rivista Matematica dell'Universit di Parma (7), 8 (2008), 139-169.
  15. De Bonis, M.C., Mastroianni, G.: Nyström method for systems of integral equations on the real semiaxis, IMA Journal of Numerical Analysis, 29 (2009), no. 3, 632-650. doi: 10.1093/imanum/drn035.
  16. De Bonis, M.C., Laurita, C.: Nyström method for Cauchy Singular Integral Equations with negative index, Journal of Computational and Applied Mathematics, 232 (2009), no. 2, 523-538. doi: 10.1016/j.cam.2009.06.028.
  17. De Bonis, M.C., Pastore, P.: A quadrature formula for integrals of highly oscillatory functions, Rendiconti del Circolo di Matematico di Palermo Serie II, Suppl. 82 (2010), 279-303
  18. De Bonis, M.C., Mastroianni, G.: Direct methods for CSIE in weighted Zygmund spaces with uniform norm, Rivista Matematica dell'Universit di Parma, Vol. 2 (2011), 29-55
  19. De Bonis, M.C., Mastroianni, G., Notarangelo, I.: Gaussian quadrature rules with exponential weights on (-1,1), Numerische Mathematik, 120 (2012), no.3, 433-464. doi: 10.1007/s00211-011-0417-9.
  20. De Bonis, M.C., Laurita, C.: A quadrature method for systems of Cauchy Singular Integral Equations, Journal of Integral Equations and Applications, 24 (2012), no.2, 241-271. doi:10.1216/JIE-2012-24-2-241.
  21. De Bonis, M.C., Laurita, C.: Numerical solution of systems of Cauchy singular integral equations with constant coefficients. Applied Mathematics and Computation, 219 (2012), no. 4, 1391-1410. doi: 10.1016/j.amc.2012.08.022.
  22. De Bonis, M.C.: Remarks on two integral operators and numerical methods for CSIE. Journal of Computational and Applied Mathematics, 260 (2014), 117-134. doi: 10.1016/j.cam.2013.09.063.
  23. De Bonis, M.C., Mastroianni, G.: Numerical Treatment of a class of systems of Fredholm integral equations on the real line. Mathematics of Computation, 83 (2014), no. 286, 771 788. doi: 10.1090/S0025-5718-2013-02727-5.
  24. De Bonis, M.C., Laurita, C.: A modified Nyström method for integral equations with Mellin type kernels. Journal of Computational and Applied Mathematics, 296 (2016), 512-527. doi: 10.1016/j.cam.2015.10.010.
  25. De Bonis, M.C., Laurita, C.: A Nyström method for integral equations with fixed singularities of Mellin type in weighted L^p spaces. Applied Mathematics and Computation, 303 (2017), 55-69. doi: 10.1016/j.amc.2017.01.027.
  26. De Bonis, M.C., Occorsio, D.: On the simultaneous approximation of a Hilbert transform and its derivatives on the real semiaxis. Applied Numerical Mathematics, 114 (2017), 132 153. doi: 10.1016/j.apnum.2016.12.002.
  27. De Bonis, M.C., Occorsio, D.: Approximation of Hilbert and Hadamard transforms on (0, +\infty). Applied Numerical Mathematics, 116 (2017), 184 194 doi: 10.1016/j.apnum.2016.12.001.
  28. De Bonis, M.C., Occorsio, D.: Numerical methods for hypersingular integrals on the real line. Dolomites Research Notes on Approximation, 10 (2017), 97-117. doi: 10.14658/pupj-drna-2017-Special\_Issue-11.
  29. De Bonis, M.C., Occorsio, D.: Numerical computation of hypersingular integrals on the real semiaxis. Applied Mathematics and Computation, 313 (2017), 367-383. doi: 10.1016/j.amc.2017.06.009.
  30. De Bonis, M.C., Laurita, C.: On the stability of a modified Nyström method for Mellin convolution equations in weighted spaces. Numerical Algorithms, 15 (2018), no. 2, 611-631. doi: 10.1007/s11075-017-0453-3.
  31. De Bonis, M.C., Mastroianni, G.: On the Hermite-Fejer interpolation based at the zeros of generalized Freud polynomials. Mediterranean Journal of Mathematics, 15 (1) (2018), art. no. 26. doi:10.1007/s00009-018-1073-4.
  32. De Bonis, M.C., Occorsio, D.: A product integration rule for hypersingular integrals in (0,+\infty). Electronic Transactions on Numerical Analysis, 50 (2018), 129-143. doi: 10.1553/etna_vol50s129
  33. De Bonis, M.C., Occorsio, D.: Error bounds for a Gauss-type quadrature rule to evaluate hypersingular integrals. Filomat, 32 (2018), no. 7, 2525-2543. doi: 10.2298/FIL1807525B.
  34. De Bonis, M.C., Kubayi, D.: Hermite-Fejer and Grunwald interpolation at generalized Laguerre zeros. Filomat, 33 (2019), no. 15. doi: 10.2298/FIL1915855D.
  35. De Bonis, M.C., Occorsio, D.: Quadrature methods for integro-differential equations of Prandtl's type in weighted spaces of continuous functions. Applied Mathematics and Computation, 393 (2021), doi: 10.1016/j.amc.2020.125721.
  36. De Bonis, M.C., Occorsio, D., Themistoclakis, W. : Filtered interpolation for solving Prandtl s integro-differential equations. Numerical Algorithms (2021) doi: 10.1007/s11075-020-01053-x
  37. De Bonis, M.C., Laurita, C.: The numerical solution of Cauchy singular integral equations with additional fixed singularities. Dolomites Research Notes on Approximation, 14 (2021), 26-38. doi: 10.14658/pupj-drna-2021-2-5.
  38. De Bonis, M.C., Stanić, M.P., Tomović Mladenović, T.V.: Nyström methods for approximating the solutions of an integral equation arising from a problem in mathematical biology. Applied Numerical Mathematics, 171 (2022), 193-211. doi: 10.1016/j.apnum.2021.09.004.
  39. De Bonis, M.C., Laurita, C., Sagaria, V.: A numerical method for linear Volterra integral equations on infinite intervals and its application to the resolution of metastatic tumor growth models. Applied Numerical Mathematics, 172 (2022), 475-496. doi: 10.1016/j.apnum.2021.10.015.
  40. De Bonis, M.C., Sagaria, V.: Numerical method for hypersingular integrals of highly oscillatory functions on the positive semiaxis. Dolomites Research Notes on Approximation, 15 no. 3 (2022), 49-64. doi: 10.14658/pupj-drna-2022-3-6.
  41. Bulai I. M., De Bonis, M.C., Laurita C., Sagaria, V.: MatLab Toolbox for the numerical solution of linear Volterra integral equations arising in metastatic tumor growth models. Dolomites Research Notes on Approximation, 15 no. 2 (2022), 13-24. doi: 10.14658/pupj-drna-2022-2-2.
  42. Bulai I. M., De Bonis, M.C., Laurita C., Sagaria, V.: Modeling metastatic tumor evolution, numerical resolution and growth prediction. Mathematics and Computers in simulation, 203 (2023), 721-740. doi: 10.1016/j.matcom.2022.07.002.
  43. De Bonis, M.C., Mennouni, A., Occorsio, D.: A numerical method for solving systems of hypersingular integro-differential equations. Electronic Transactions on Numerical Analysis, 85 (2023), 378-393. doi: 10.1553/etna_vol58s378.
  44. De Bonis, M.C., Sagaria, V.: Numerical method for boundary value problems on the real line. Applied Numerical Mathematics, 85 (2024), 179-194. doi: 10.1016/j.apnum.2023.05.016.
  45. De Bonis, M.C., Occorsio, D.: A Global Method for Approximating Caputo Fractional Derivatives-An Application to the Bagley-Torvik Equation. Axioms, 13 (11), 750 (2024), doi: 10.3390/axioms13110750.
  46. Bulai I. M., De Bonis, M.C., Laurita C.: Numerical solution of metastatic tumor growth models with treatment. Applied Mathematics and Computation, 484 (2025), 12898. doi: 10.1016/j.amc.2024.128988.
  47. De Bonis, M.C., Mastroianni, G., Notarangelo, I.: Uniform and Convergence of the Hermite Interpolation at Pollaczek-Laguerre Zeros. Mediterranean Journal of Mathematics, 22 (2025), no. 53, 22-53. doi: /10.1007/s00009-025-02822-5.
  48. Bulai I. M., De Bonis, M.C., Laurita C.: A new MATLAB software for numerical computation of biological observables for metastatic tumor growth. Mathematics and Computers in Simulation, 234 (2025), 31-49. doi: 10.1016/j.matcom.2025.02.014.